Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.ChebyshevMarkov

Chebyshev-Markov inequality in terms of Lp seminorms #

In this file we formulate several versions of the Chebyshev-Markov inequality in terms of the MeasureTheory.snorm seminorm.

theorem MeasureTheory.pow_mul_meas_ge_le_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
(ε * μ {x : α | ε f x‖₊ ^ ENNReal.toReal p}) ^ (1 / ENNReal.toReal p) MeasureTheory.snorm f p μ
theorem MeasureTheory.mul_meas_ge_le_pow_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
ε * μ {x : α | ε f x‖₊ ^ ENNReal.toReal p} MeasureTheory.snorm f p μ ^ ENNReal.toReal p
theorem MeasureTheory.mul_meas_ge_le_pow_snorm' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
ε ^ ENNReal.toReal p * μ {x : α | ε f x‖₊} MeasureTheory.snorm f p μ ^ ENNReal.toReal p

A version of Chebyshev-Markov's inequality using Lp-norms.

theorem MeasureTheory.meas_ge_le_mul_pow_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) {ε : ENNReal} (hε : ε 0) :
μ {x : α | ε f x‖₊} ε⁻¹ ^ ENNReal.toReal p * MeasureTheory.snorm f p μ ^ ENNReal.toReal p