Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.CompareExp

Compare Lp seminorms for different values of p #

In this file we compare MeasureTheory.snorm' and MeasureTheory.snorm for different exponents.

theorem MeasureTheory.snorm'_le_snorm'_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {p : } {q : } (hp0_lt : 0 < p) (hpq : p q) (hf : MeasureTheory.AEStronglyMeasurable f μ) :
MeasureTheory.snorm' f p μ MeasureTheory.snorm' f q μ * μ Set.univ ^ (1 / p - 1 / q)
theorem MeasureTheory.snorm'_le_snormEssSup_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {q : } (hq_pos : 0 < q) :
MeasureTheory.snorm' f q μ MeasureTheory.snormEssSup f μ * μ Set.univ ^ (1 / q)
theorem MeasureTheory.snorm_le_snorm_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {p : ENNReal} {q : ENNReal} (hpq : p q) (hf : MeasureTheory.AEStronglyMeasurable f μ) :
MeasureTheory.snorm f p μ MeasureTheory.snorm f q μ * μ Set.univ ^ (1 / ENNReal.toReal p - 1 / ENNReal.toReal q)
theorem MeasureTheory.snorm'_lt_top_of_snorm'_lt_top_of_exponent_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {p : } {q : } [MeasureTheory.IsFiniteMeasure μ] (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfq_lt_top : MeasureTheory.snorm' f q μ < ) (hp_nonneg : 0 p) (hpq : p q) :
theorem MeasureTheory.snorm_le_snorm_top_mul_snorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} (p : ENNReal) (f : αE) {g : αF} (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) :
MeasureTheory.snorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.snorm f μ * MeasureTheory.snorm g p μ
theorem MeasureTheory.snorm_le_snorm_mul_snorm_top {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} (p : ENNReal) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (g : αF) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) :
MeasureTheory.snorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.snorm f p μ * MeasureTheory.snorm g μ
theorem MeasureTheory.snorm'_le_snorm'_mul_snorm' {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p : } {q : } {r : } (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.snorm' (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.snorm' f q μ * MeasureTheory.snorm' g r μ
theorem MeasureTheory.snorm_le_snorm_mul_snorm_of_nnnorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p : ENNReal} {q : ENNReal} {r : ENNReal} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.snorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.snorm f q μ * MeasureTheory.snorm g r μ

Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

theorem MeasureTheory.snorm_le_snorm_mul_snorm'_of_norm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p : ENNReal} {q : ENNReal} {r : ENNReal} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x) f x * g x) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.snorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.snorm f q μ * MeasureTheory.snorm g r μ

Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

theorem MeasureTheory.snorm_smul_le_snorm_top_mul_snorm {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] (p : ENNReal) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (φ : α𝕜) :
theorem MeasureTheory.snorm_smul_le_snorm_mul_snorm_top {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] (p : ENNReal) (f : αE) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) :
theorem MeasureTheory.snorm'_smul_le_mul_snorm' {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : } {q : } {r : } {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) :
theorem MeasureTheory.snorm_smul_le_mul_snorm {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {q : ENNReal} {r : ENNReal} {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) (hpqr : 1 / p = 1 / q + 1 / r) :

Hölder's inequality, as an inequality on the ℒp seminorm of a scalar product φ • f.

theorem MeasureTheory.Memℒp.smul {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {q : ENNReal} {r : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f r) (hφ : MeasureTheory.Memℒp φ q) (hpqr : 1 / p = 1 / q + 1 / r) :
theorem MeasureTheory.Memℒp.smul_of_top_right {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f p) (hφ : MeasureTheory.Memℒp φ ) :
theorem MeasureTheory.Memℒp.smul_of_top_left {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f ) (hφ : MeasureTheory.Memℒp φ p) :