Action of Mᵈᵐᵃ
on Lᵖ
spaces #
In this file we define action of Mᵈᵐᵃ
on MeasureTheory.Lp E p μ
If f : α → E
is a function representing an equivalence class in Lᵖ(α, E)
, M
acts on α
,
and c : M
, then (.mk c : Mᵈᵐᵃ) • [f]
is represented by the function a ↦ f (c • a)
.
We also prove basic properties of this action.
theorem
DomAddAct.instVAddDomAddActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddAddCommGroupMemAddAddSubgroupInstAddAddGroupToAddAddGroupToNormedAddAddGroupToTopologicalAddAddGroupInstMembershipInstSetLikeAddAddSubgroupLp.proof_2
{M : Type u_2}
{α : Type u_1}
[MeasurableSpace M]
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
:
MeasureTheory.MeasurePreserving fun (x : α) => DomAddAct.mk.symm c +ᵥ x
theorem
DomAddAct.instVAddDomAddActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddAddCommGroupMemAddAddSubgroupInstAddAddGroupToAddAddGroupToNormedAddAddGroupToTopologicalAddAddGroupInstMembershipInstSetLikeAddAddSubgroupLp.proof_1
{E : Type u_1}
[NormedAddCommGroup E]
:
instance
DomAddAct.instVAddDomAddActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddAddCommGroupMemAddAddSubgroupInstAddAddGroupToAddAddGroupToNormedAddAddGroupToTopologicalAddAddGroupInstMembershipInstSetLikeAddAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
:
VAdd Mᵈᵃᵃ ↥(MeasureTheory.Lp E p)
Equations
- One or more equations did not get rendered due to their size.
instance
DomMulAct.instSMulDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
:
SMul Mᵈᵐᵃ ↥(MeasureTheory.Lp E p)
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
DomAddAct.vadd_Lp_val
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p))
:
@[simp]
theorem
DomMulAct.smul_Lp_val
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p))
:
theorem
DomAddAct.vadd_Lp_ae_eq
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p))
:
↑↑(c +ᵥ f) =ᶠ[MeasureTheory.Measure.ae μ] fun (x : α) => ↑↑f (DomAddAct.mk.symm c +ᵥ x)
theorem
DomMulAct.smul_Lp_ae_eq
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p))
:
↑↑(c • f) =ᶠ[MeasureTheory.Measure.ae μ] fun (x : α) => ↑↑f (DomMulAct.mk.symm c • x)
theorem
DomAddAct.mk_vadd_toLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : M)
{f : α → E}
(hf : MeasureTheory.Memℒp f p)
:
DomAddAct.mk c +ᵥ MeasureTheory.Memℒp.toLp f hf = MeasureTheory.Memℒp.toLp (fun (x : α) => f (c +ᵥ x)) (_ : MeasureTheory.Memℒp (f ∘ fun (x : α) => c +ᵥ x) p)
theorem
DomMulAct.mk_smul_toLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : M)
{f : α → E}
(hf : MeasureTheory.Memℒp f p)
:
DomMulAct.mk c • MeasureTheory.Memℒp.toLp f hf = MeasureTheory.Memℒp.toLp (fun (x : α) => f (c • x)) (_ : MeasureTheory.Memℒp (f ∘ fun (x : α) => c • x) p)
@[simp]
theorem
DomAddAct.vadd_Lp_const
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
[MeasureTheory.IsFiniteMeasure μ]
(c : Mᵈᵃᵃ)
(a : E)
:
c +ᵥ (MeasureTheory.Lp.const p μ) a = (MeasureTheory.Lp.const p μ) a
@[simp]
theorem
DomMulAct.smul_Lp_const
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
[MeasureTheory.IsFiniteMeasure μ]
(c : Mᵈᵐᵃ)
(a : E)
:
c • (MeasureTheory.Lp.const p μ) a = (MeasureTheory.Lp.const p μ) a
instance
DomMulAct.instSMulCommClassDomMulActDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLpInstSMulDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLpInstSMulDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLp
{M : Type u_1}
{N : Type u_2}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace N]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
[SMul N α]
[SMulCommClass M N α]
[MeasureTheory.SMulInvariantMeasure N α μ]
[MeasurableSMul N α]
:
SMulCommClass Mᵈᵐᵃ Nᵈᵐᵃ ↥(MeasureTheory.Lp E p)
Equations
- (_ : SMulCommClass Mᵈᵐᵃ Nᵈᵐᵃ ↥(MeasureTheory.Lp E p)) = (_ : SMulCommClass Mᵈᵐᵃ Nᵈᵐᵃ ↥(MeasureTheory.Lp E p))
instance
DomMulAct.instSMulCommClassDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLpInstSMulDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLpToSMulZeroToSMulZeroClassToZeroToMonoidWithZeroToSemiringToRingToSMulWithZeroToMulActionWithZeroToAddCommMonoidInstAddCommMonoidToAddCommMonoidToAddCommGroupToContinuousAddToAddGroupToAddSubmonoidInstModule
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
{𝕜 : Type u_5}
[NormedRing 𝕜]
[Module 𝕜 E]
[BoundedSMul 𝕜 E]
:
SMulCommClass Mᵈᵐᵃ 𝕜 ↥(MeasureTheory.Lp E p)
Equations
- (_ : SMulCommClass Mᵈᵐᵃ 𝕜 ↥(MeasureTheory.Lp E p)) = (_ : SMulCommClass Mᵈᵐᵃ 𝕜 ↥(MeasureTheory.Lp E p))
instance
DomMulAct.instSMulCommClassDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLpToSMulZeroToSMulZeroClassToZeroToMonoidWithZeroToSemiringToRingToSMulWithZeroToMulActionWithZeroToAddCommMonoidInstAddCommMonoidToAddCommMonoidToAddCommGroupToContinuousAddToAddGroupToAddSubmonoidInstModuleInstSMulDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
{𝕜 : Type u_5}
[NormedRing 𝕜]
[Module 𝕜 E]
[BoundedSMul 𝕜 E]
:
SMulCommClass 𝕜 Mᵈᵐᵃ ↥(MeasureTheory.Lp E p)
Equations
- (_ : SMulCommClass 𝕜 Mᵈᵐᵃ ↥(MeasureTheory.Lp E p)) = (_ : SMulCommClass 𝕜 Mᵈᵐᵃ ↥(MeasureTheory.Lp E p))
@[simp]
theorem
DomAddAct.vadd_Lp_add
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p))
(g : ↥(MeasureTheory.Lp E p))
:
theorem
DomMulAct.smul_Lp_add
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p))
(g : ↥(MeasureTheory.Lp E p))
:
@[simp]
theorem
DomAddAct.vadd_Lp_zero
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
:
@[simp]
theorem
DomMulAct.smul_Lp_zero
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
:
theorem
DomAddAct.vadd_Lp_neg
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p))
:
theorem
DomMulAct.smul_Lp_neg
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p))
:
theorem
DomAddAct.vadd_Lp_sub
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p))
(g : ↥(MeasureTheory.Lp E p))
:
theorem
DomMulAct.smul_Lp_sub
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p))
(g : ↥(MeasureTheory.Lp E p))
:
instance
DomMulAct.instDistribSMulDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLpToAddZeroClassToAddZeroClassToAddMonoidToSubNegMonoidToAddSubmonoid
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
:
DistribSMul Mᵈᵐᵃ ↥(MeasureTheory.Lp E p)
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
DomAddAct.norm_vadd_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p))
:
@[simp]
theorem
DomMulAct.norm_smul_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p))
:
@[simp]
theorem
DomAddAct.nnnorm_vadd_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p))
:
@[simp]
theorem
DomMulAct.nnnorm_smul_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p))
:
@[simp]
theorem
DomAddAct.dist_vadd_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p))
(g : ↥(MeasureTheory.Lp E p))
:
@[simp]
theorem
DomMulAct.dist_smul_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p))
(g : ↥(MeasureTheory.Lp E p))
:
@[simp]
theorem
DomAddAct.edist_vadd_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p))
(g : ↥(MeasureTheory.Lp E p))
:
@[simp]
theorem
DomMulAct.edist_smul_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p))
(g : ↥(MeasureTheory.Lp E p))
:
instance
DomMulAct.instIsometricSMulDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLpToPseudoEMetricSpaceToEMetricSpaceToMetricSpaceInstNormedAddCommGroupInstSMulDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
[Fact (1 ≤ p)]
:
IsometricSMul Mᵈᵐᵃ ↥(MeasureTheory.Lp E p)
Equations
- (_ : IsometricSMul Mᵈᵐᵃ ↥(MeasureTheory.Lp E p)) = (_ : IsometricSMul Mᵈᵐᵃ ↥(MeasureTheory.Lp E p))
instance
DomAddAct.instAddActionDomAddActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddAddCommGroupMemAddAddSubgroupInstAddAddGroupToAddAddGroupToNormedAddAddGroupToTopologicalAddAddGroupInstMembershipInstSetLikeAddAddSubgroupLpInstAddMonoidDomAddActAddMonoid
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[AddMonoid M]
[AddAction M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
:
AddAction Mᵈᵃᵃ ↥(MeasureTheory.Lp E p)
Equations
- One or more equations did not get rendered due to their size.
theorem
DomAddAct.instAddActionDomAddActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddAddCommGroupMemAddAddSubgroupInstAddAddGroupToAddAddGroupToNormedAddAddGroupToTopologicalAddAddGroupInstMembershipInstSetLikeAddAddSubgroupLpInstAddMonoidDomAddActAddMonoid.proof_1
{E : Type u_1}
[NormedAddCommGroup E]
:
theorem
DomAddAct.instAddActionDomAddActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddAddCommGroupMemAddAddSubgroupInstAddAddGroupToAddAddGroupToNormedAddAddGroupToTopologicalAddAddGroupInstMembershipInstSetLikeAddAddSubgroupLpInstAddMonoidDomAddActAddMonoid.proof_3
{M : Type u_1}
{α : Type u_2}
{E : Type u_3}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[AddMonoid M]
[AddAction M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
:
∀ (x : Mᵈᵃᵃ) (x_1 : ↥(MeasureTheory.Lp E p)), ↑(x +ᵥ x_1) = ↑(x +ᵥ x_1)
theorem
DomAddAct.instAddActionDomAddActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddAddCommGroupMemAddAddSubgroupInstAddAddGroupToAddAddGroupToNormedAddAddGroupToTopologicalAddAddGroupInstMembershipInstSetLikeAddAddSubgroupLpInstAddMonoidDomAddActAddMonoid.proof_2
{α : Type u_1}
{E : Type u_2}
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
:
Function.Injective Subtype.val
instance
DomMulAct.instMulActionDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLpInstMonoidDomMulActMonoid
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[Monoid M]
[MulAction M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
:
MulAction Mᵈᵐᵃ ↥(MeasureTheory.Lp E p)
Equations
- One or more equations did not get rendered due to their size.
instance
DomMulAct.instDistribMulActionDomMulActSubtypeAEEqFunToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedAddCommGroupMemAddSubgroupInstAddGroupToAddGroupToNormedAddGroupToTopologicalAddGroupInstMembershipInstSetLikeAddSubgroupLpInstMonoidDomMulActMonoidToAddMonoidToAddMonoidToSubNegMonoidToAddSubmonoid
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[Monoid M]
[MulAction M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
:
DistribMulAction Mᵈᵐᵃ ↥(MeasureTheory.Lp E p)
Equations
- One or more equations did not get rendered due to their size.