Documentation

Mathlib.MeasureTheory.Function.LpSpace.DomAct.Basic

Action of Mᵈᵐᵃ on Lᵖ spaces #

In this file we define action of Mᵈᵐᵃ on MeasureTheory.Lp E p μ If f : α → E is a function representing an equivalence class in Lᵖ(α, E), M acts on α, and c : M, then (.mk c : Mᵈᵐᵃ) • [f] is represented by the function a ↦ f (c • a).

We also prove basic properties of this action.

@[simp]
theorem DomAddAct.vadd_Lp_val {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p)) :
(c +ᵥ f) = c +ᵥ f
@[simp]
theorem DomMulAct.smul_Lp_val {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p)) :
(c f) = c f
theorem DomAddAct.vadd_Lp_ae_eq {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p)) :
(c +ᵥ f) =ᶠ[MeasureTheory.Measure.ae μ] fun (x : α) => f (DomAddAct.mk.symm c +ᵥ x)
theorem DomMulAct.smul_Lp_ae_eq {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p)) :
(c f) =ᶠ[MeasureTheory.Measure.ae μ] fun (x : α) => f (DomMulAct.mk.symm c x)
theorem DomAddAct.mk_vadd_toLp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : M) {f : αE} (hf : MeasureTheory.Memℒp f p) :
DomAddAct.mk c +ᵥ MeasureTheory.Memℒp.toLp f hf = MeasureTheory.Memℒp.toLp (fun (x : α) => f (c +ᵥ x)) (_ : MeasureTheory.Memℒp (f fun (x : α) => c +ᵥ x) p)
theorem DomMulAct.mk_smul_toLp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : M) {f : αE} (hf : MeasureTheory.Memℒp f p) :
DomMulAct.mk c MeasureTheory.Memℒp.toLp f hf = MeasureTheory.Memℒp.toLp (fun (x : α) => f (c x)) (_ : MeasureTheory.Memℒp (f fun (x : α) => c x) p)
@[simp]
theorem DomAddAct.vadd_Lp_add {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p)) (g : (MeasureTheory.Lp E p)) :
c +ᵥ (f + g) = c +ᵥ f + (c +ᵥ g)
theorem DomMulAct.smul_Lp_add {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p)) (g : (MeasureTheory.Lp E p)) :
c (f + g) = c f + c g
@[simp]
theorem DomAddAct.vadd_Lp_zero {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) :
c +ᵥ 0 = 0
@[simp]
theorem DomMulAct.smul_Lp_zero {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) :
c 0 = 0
theorem DomAddAct.vadd_Lp_neg {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p)) :
c +ᵥ -f = -(c +ᵥ f)
theorem DomMulAct.smul_Lp_neg {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p)) :
c -f = -(c f)
theorem DomAddAct.vadd_Lp_sub {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p)) (g : (MeasureTheory.Lp E p)) :
c +ᵥ (f - g) = c +ᵥ f - (c +ᵥ g)
theorem DomMulAct.smul_Lp_sub {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p)) (g : (MeasureTheory.Lp E p)) :
c (f - g) = c f - c g
@[simp]
theorem DomAddAct.norm_vadd_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p)) :
@[simp]
theorem DomMulAct.norm_smul_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p)) :
@[simp]
theorem DomAddAct.dist_vadd_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p)) (g : (MeasureTheory.Lp E p)) :
dist (c +ᵥ f) (c +ᵥ g) = dist f g
@[simp]
theorem DomMulAct.dist_smul_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p)) (g : (MeasureTheory.Lp E p)) :
dist (c f) (c g) = dist f g
@[simp]
theorem DomAddAct.edist_vadd_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p)) (g : (MeasureTheory.Lp E p)) :
edist (c +ᵥ f) (c +ᵥ g) = edist f g
@[simp]
theorem DomMulAct.edist_smul_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p)) (g : (MeasureTheory.Lp E p)) :
edist (c f) (c g) = edist f g