Documentation

Mathlib.MeasureTheory.Function.SpecialFunctions.IsROrC

Measurability of the basic IsROrC functions #

theorem IsROrC.measurable_re {𝕜 : Type u_1} [IsROrC 𝕜] :
Measurable IsROrC.re
theorem IsROrC.measurable_im {𝕜 : Type u_1} [IsROrC 𝕜] :
Measurable IsROrC.im
theorem Measurable.re {α : Type u_1} {𝕜 : Type u_2} [IsROrC 𝕜] {m : MeasurableSpace α} {f : α𝕜} (hf : Measurable f) :
Measurable fun (x : α) => IsROrC.re (f x)
theorem AEMeasurable.re {α : Type u_1} {𝕜 : Type u_2} [IsROrC 𝕜] {m : MeasurableSpace α} {f : α𝕜} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f) :
AEMeasurable fun (x : α) => IsROrC.re (f x)
theorem Measurable.im {α : Type u_1} {𝕜 : Type u_2} [IsROrC 𝕜] {m : MeasurableSpace α} {f : α𝕜} (hf : Measurable f) :
Measurable fun (x : α) => IsROrC.im (f x)
theorem AEMeasurable.im {α : Type u_1} {𝕜 : Type u_2} [IsROrC 𝕜] {m : MeasurableSpace α} {f : α𝕜} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f) :
AEMeasurable fun (x : α) => IsROrC.im (f x)
theorem IsROrC.measurable_ofReal {𝕜 : Type u_2} [IsROrC 𝕜] :
Measurable IsROrC.ofReal
theorem measurable_of_re_im {α : Type u_1} {𝕜 : Type u_2} [IsROrC 𝕜] [MeasurableSpace α] {f : α𝕜} (hre : Measurable fun (x : α) => IsROrC.re (f x)) (him : Measurable fun (x : α) => IsROrC.im (f x)) :
theorem aemeasurable_of_re_im {α : Type u_1} {𝕜 : Type u_2} [IsROrC 𝕜] [MeasurableSpace α] {f : α𝕜} {μ : MeasureTheory.Measure α} (hre : AEMeasurable fun (x : α) => IsROrC.re (f x)) (him : AEMeasurable fun (x : α) => IsROrC.im (f x)) :