Bounding of integrals by asymptotics #
We establish integrability of f
from f = O(g)
.
Main results #
Asymptotics.IsBigO.integrableAtFilter
: Iff = O[l] g
on measurably generatedl
,f
is strongly measurable atl
, andg
is integrable atl
, thenf
is integrable atl
.
theorem
Asymptotics.IsBigO.integrableAtFilter
{α : Type u_1}
{E : Type u_2}
{F : Type u_3}
[MeasurableSpace α]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
{f : α → E}
{g : α → F}
{μ : MeasureTheory.Measure α}
{l : Filter α}
[Filter.IsMeasurablyGenerated l]
(hf : f =O[l] g)
(hfm : StronglyMeasurableAtFilter f l)
(hg : MeasureTheory.IntegrableAtFilter g l)
:
If f = O[l] g
on measurably generated l
, f
is strongly measurable at l
,
and g
is integrable at l
, then f
is integrable at l
.
theorem
Asymptotics.IsBigO.integrable
{α : Type u_1}
{E : Type u_2}
{F : Type u_3}
[MeasurableSpace α]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
{f : α → E}
{g : α → F}
{μ : MeasureTheory.Measure α}
(hfm : MeasureTheory.AEStronglyMeasurable f μ)
(hf : f =O[⊤] g)
(hg : MeasureTheory.Integrable g)
:
Variant of MeasureTheory.Integrable.mono
taking f =O[⊤] (g)
instead of ‖f(x)‖ ≤ ‖g(x)‖