Documentation

Mathlib.MeasureTheory.Integral.Pi

Integration with respect to a finite product of measures #

theorem MeasureTheory.integral_fin_nat_prod_eq_prod {𝕜 : Type u_1} [IsROrC 𝕜] {n : } {E : Fin nType u_2} [(i : Fin n) → MeasureTheory.MeasureSpace (E i)] [∀ (i : Fin n), MeasureTheory.SigmaFinite MeasureTheory.volume] (f : (i : Fin n) → E i𝕜) :
(∫ (x : (i : Fin n) → E i), Finset.prod Finset.univ fun (i : Fin n) => f i (x i)) = Finset.prod Finset.univ fun (i : Fin n) => ∫ (x : E i), f i x

A version of Fubini's theorem in n variables, for a natural number n.

theorem MeasureTheory.integral_fintype_prod_eq_prod {𝕜 : Type u_1} [IsROrC 𝕜] (ι : Type u_2) [Fintype ι] {E : ιType u_3} (f : (i : ι) → E i𝕜) [(i : ι) → MeasureTheory.MeasureSpace (E i)] [∀ (i : ι), MeasureTheory.SigmaFinite MeasureTheory.volume] :
(∫ (x : (i : ι) → E i), Finset.prod Finset.univ fun (i : ι) => f i (x i)) = Finset.prod Finset.univ fun (i : ι) => ∫ (x : E i), f i x

A version of Fubini's theorem with the variables indexed by a general finite type.

theorem MeasureTheory.integral_fintype_prod_eq_pow {𝕜 : Type u_1} [IsROrC 𝕜] {E : Type u_2} (ι : Type u_3) [Fintype ι] (f : E𝕜) [MeasureTheory.MeasureSpace E] [MeasureTheory.SigmaFinite MeasureTheory.volume] :
(∫ (x : ιE), Finset.prod Finset.univ fun (i : ι) => f (x i)) = (∫ (x : E), f x) ^ Fintype.card ι