Documentation

Mathlib.MeasureTheory.Measure.Tilted

Exponentially tilted measures #

The exponential tilting of a measure μ on α by a function f : α → ℝ is the measure with density x ↦ exp (f x) / ∫ y, exp (f y) ∂μ with respect to μ. This is sometimes also called the Esscher transform.

The definition is mostly used for f linear, in which case the exponentially tilted measure belongs to the natural exponential family of the base measure. Exponentially tilted measures for general f can be used for example to establish variational expressions for the Kullback-Leibler divergence.

Main definitions #

noncomputable def MeasureTheory.Measure.tilted {α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) (f : α) :

Exponentially tilted measure. When x ↦ exp (f x) is integrable, μ.tilted f is the probability measure with density with respect to μ proportional to exp (f x). Otherwise it is 0.

Equations
Instances For
    @[simp]
    theorem MeasureTheory.tilted_of_not_integrable {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} (hf : ¬MeasureTheory.Integrable fun (x : α) => Real.exp (f x)) :
    μ.tilted f = 0
    @[simp]
    theorem MeasureTheory.tilted_of_not_aemeasurable {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} (hf : ¬AEMeasurable f) :
    μ.tilted f = 0
    @[simp]
    theorem MeasureTheory.tilted_zero_measure {α : Type u_1} {mα : MeasurableSpace α} (f : α) :
    0.tilted f = 0
    @[simp]
    theorem MeasureTheory.tilted_const' {α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) (c : ) :
    (μ.tilted fun (x : α) => c) = (μ Set.univ)⁻¹ μ
    theorem MeasureTheory.tilted_const {α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) [MeasureTheory.IsProbabilityMeasure μ] (c : ) :
    (μ.tilted fun (x : α) => c) = μ
    @[simp]
    theorem MeasureTheory.tilted_zero' {α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) :
    μ.tilted 0 = (μ Set.univ)⁻¹ μ
    theorem MeasureTheory.tilted_congr {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} {g : α} (hfg : f =ᶠ[MeasureTheory.Measure.ae μ] g) :
    μ.tilted f = μ.tilted g
    theorem MeasureTheory.tilted_eq_withDensity_nnreal {α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) (f : α) :
    μ.tilted f = MeasureTheory.Measure.withDensity μ fun (x : α) => { val := Real.exp (f x) / ∫ (x : α), Real.exp (f x)μ, property := (_ : 0 Real.exp (f x) / ∫ (x : α), Real.exp (f x)μ) }
    theorem MeasureTheory.tilted_apply' {α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) (f : α) {s : Set α} (hs : MeasurableSet s) :
    (μ.tilted f) s = ∫⁻ (a : α) in s, ENNReal.ofReal (Real.exp (f a) / ∫ (x : α), Real.exp (f x)μ)μ
    theorem MeasureTheory.tilted_apply {α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) [MeasureTheory.SFinite μ] (f : α) (s : Set α) :
    (μ.tilted f) s = ∫⁻ (a : α) in s, ENNReal.ofReal (Real.exp (f a) / ∫ (x : α), Real.exp (f x)μ)μ
    theorem MeasureTheory.tilted_apply_eq_ofReal_integral' {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} (f : α) (hs : MeasurableSet s) :
    (μ.tilted f) s = ENNReal.ofReal (∫ (a : α) in s, Real.exp (f a) / ∫ (x : α), Real.exp (f x)μμ)
    theorem MeasureTheory.tilted_apply_eq_ofReal_integral {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SFinite μ] (f : α) (s : Set α) :
    (μ.tilted f) s = ENNReal.ofReal (∫ (a : α) in s, Real.exp (f a) / ∫ (x : α), Real.exp (f x)μμ)
    instance MeasureTheory.isFiniteMeasure_tilted {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} :
    Equations
    theorem MeasureTheory.isProbabilityMeasure_tilted {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} [NeZero μ] (hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x)) :
    theorem MeasureTheory.set_lintegral_tilted' {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} (f : α) (g : αENNReal) {s : Set α} (hs : MeasurableSet s) :
    ∫⁻ (x : α) in s, g xμ.tilted f = ∫⁻ (x : α) in s, ENNReal.ofReal (Real.exp (f x) / ∫ (x : α), Real.exp (f x)μ) * g xμ
    theorem MeasureTheory.set_lintegral_tilted {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SFinite μ] (f : α) (g : αENNReal) (s : Set α) :
    ∫⁻ (x : α) in s, g xμ.tilted f = ∫⁻ (x : α) in s, ENNReal.ofReal (Real.exp (f x) / ∫ (x : α), Real.exp (f x)μ) * g xμ
    theorem MeasureTheory.lintegral_tilted {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} (f : α) (g : αENNReal) :
    ∫⁻ (x : α), g xμ.tilted f = ∫⁻ (x : α), ENNReal.ofReal (Real.exp (f x) / ∫ (x : α), Real.exp (f x)μ) * g xμ
    theorem MeasureTheory.set_integral_tilted' {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] (f : α) (g : αE) {s : Set α} (hs : MeasurableSet s) :
    ∫ (x : α) in s, g xμ.tilted f = ∫ (x : α) in s, (Real.exp (f x) / ∫ (x : α), Real.exp (f x)μ) g xμ
    theorem MeasureTheory.set_integral_tilted {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [MeasureTheory.SFinite μ] (f : α) (g : αE) (s : Set α) :
    ∫ (x : α) in s, g xμ.tilted f = ∫ (x : α) in s, (Real.exp (f x) / ∫ (x : α), Real.exp (f x)μ) g xμ
    theorem MeasureTheory.integral_tilted {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] (f : α) (g : αE) :
    ∫ (x : α), g xμ.tilted f = ∫ (x : α), (Real.exp (f x) / ∫ (x : α), Real.exp (f x)μ) g xμ
    theorem MeasureTheory.integral_exp_tilted {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} (f : α) (g : α) :
    ∫ (x : α), Real.exp (g x)μ.tilted f = (∫ (x : α), Real.exp ((f + g) x)μ) / ∫ (x : α), Real.exp (f x)μ
    theorem MeasureTheory.tilted_tilted {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} (hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x)) (g : α) :
    (μ.tilted f).tilted g = μ.tilted (f + g)
    theorem MeasureTheory.tilted_comm {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} (hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x)) {g : α} (hg : MeasureTheory.Integrable fun (x : α) => Real.exp (g x)) :
    (μ.tilted f).tilted g = (μ.tilted g).tilted f
    @[simp]
    theorem MeasureTheory.tilted_neg_same' {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} (hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x)) :
    (μ.tilted f).tilted (-f) = (μ Set.univ)⁻¹ μ
    @[simp]
    theorem MeasureTheory.tilted_neg_same {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} [MeasureTheory.IsProbabilityMeasure μ] (hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x)) :
    (μ.tilted f).tilted (-f) = μ
    theorem MeasureTheory.toReal_rnDeriv_tilted_right {α : Type u_1} {mα : MeasurableSpace α} {f : α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.SigmaFinite μ] [MeasureTheory.SigmaFinite ν] (hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x)) :
    (fun (x : α) => ENNReal.toReal (MeasureTheory.Measure.rnDeriv μ (ν.tilted f) x)) =ᶠ[MeasureTheory.Measure.ae ν] fun (x : α) => (Real.exp (-f x) * ∫ (x : α), Real.exp (f x)ν) * ENNReal.toReal (MeasureTheory.Measure.rnDeriv μ ν x)
    theorem MeasureTheory.toReal_rnDeriv_tilted_left {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} {ν : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] [MeasureTheory.SigmaFinite ν] (hfμ : AEMeasurable f) (hfν : AEMeasurable f) :
    (fun (x : α) => ENNReal.toReal (MeasureTheory.Measure.rnDeriv (μ.tilted f) ν x)) =ᶠ[MeasureTheory.Measure.ae ν] fun (x : α) => (Real.exp (f x) / ∫ (x : α), Real.exp (f x)μ) * ENNReal.toReal (MeasureTheory.Measure.rnDeriv μ ν x)
    theorem MeasureTheory.rnDeriv_tilted_left_self {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} [MeasureTheory.SigmaFinite μ] (hf : AEMeasurable f) :
    MeasureTheory.Measure.rnDeriv (μ.tilted f) μ =ᶠ[MeasureTheory.Measure.ae μ] fun (x : α) => ENNReal.ofReal (Real.exp (f x) / ∫ (x : α), Real.exp (f x)μ)
    theorem MeasureTheory.log_rnDeriv_tilted_left_self {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} [MeasureTheory.SigmaFinite μ] (hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x)) :
    (fun (x : α) => Real.log (ENNReal.toReal (MeasureTheory.Measure.rnDeriv (μ.tilted f) μ x))) =ᶠ[MeasureTheory.Measure.ae μ] fun (x : α) => f x - Real.log (∫ (x : α), Real.exp (f x)μ)