Exponentially tilted measures #
The exponential tilting of a measure μ
on α
by a function f : α → ℝ
is the measure with
density x ↦ exp (f x) / ∫ y, exp (f y) ∂μ
with respect to μ
. This is sometimes also called
the Esscher transform.
The definition is mostly used for f
linear, in which case the exponentially tilted measure belongs
to the natural exponential family of the base measure. Exponentially tilted measures for general f
can be used for example to establish variational expressions for the Kullback-Leibler divergence.
Main definitions #
Measure.tilted μ f
: exponential tilting ofμ
byf
, equal toμ.withDensity (fun x ↦ ENNReal.ofReal (exp (f x) / ∫ x, exp (f x) ∂μ))
.
noncomputable def
MeasureTheory.Measure.tilted
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(f : α → ℝ)
:
Exponentially tilted measure. When x ↦ exp (f x)
is integrable, μ.tilted f
is the
probability measure with density with respect to μ
proportional to exp (f x)
. Otherwise it is 0.
Equations
- μ.tilted f = MeasureTheory.Measure.withDensity μ fun (x : α) => ENNReal.ofReal (Real.exp (f x) / ∫ (x : α), Real.exp (f x) ∂μ)
Instances For
@[simp]
theorem
MeasureTheory.tilted_of_not_integrable
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : ¬MeasureTheory.Integrable fun (x : α) => Real.exp (f x))
:
μ.tilted f = 0
@[simp]
theorem
MeasureTheory.tilted_of_not_aemeasurable
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : ¬AEMeasurable f)
:
μ.tilted f = 0
@[simp]
theorem
MeasureTheory.tilted_zero_measure
{α : Type u_1}
{mα : MeasurableSpace α}
(f : α → ℝ)
:
0.tilted f = 0
@[simp]
theorem
MeasureTheory.tilted_const'
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(c : ℝ)
:
theorem
MeasureTheory.tilted_const
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsProbabilityMeasure μ]
(c : ℝ)
:
(μ.tilted fun (x : α) => c) = μ
@[simp]
theorem
MeasureTheory.tilted_zero'
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
:
theorem
MeasureTheory.tilted_zero
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsProbabilityMeasure μ]
:
μ.tilted 0 = μ
theorem
MeasureTheory.tilted_congr
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
{g : α → ℝ}
(hfg : f =ᶠ[MeasureTheory.Measure.ae μ] g)
:
μ.tilted f = μ.tilted g
theorem
MeasureTheory.tilted_eq_withDensity_nnreal
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(f : α → ℝ)
:
theorem
MeasureTheory.tilted_apply'
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(f : α → ℝ)
{s : Set α}
(hs : MeasurableSet s)
:
↑↑(μ.tilted f) s = ∫⁻ (a : α) in s, ENNReal.ofReal (Real.exp (f a) / ∫ (x : α), Real.exp (f x) ∂μ) ∂μ
theorem
MeasureTheory.tilted_apply
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
[MeasureTheory.SFinite μ]
(f : α → ℝ)
(s : Set α)
:
↑↑(μ.tilted f) s = ∫⁻ (a : α) in s, ENNReal.ofReal (Real.exp (f a) / ∫ (x : α), Real.exp (f x) ∂μ) ∂μ
theorem
MeasureTheory.tilted_apply_eq_ofReal_integral'
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s : Set α}
(f : α → ℝ)
(hs : MeasurableSet s)
:
↑↑(μ.tilted f) s = ENNReal.ofReal (∫ (a : α) in s, Real.exp (f a) / ∫ (x : α), Real.exp (f x) ∂μ ∂μ)
theorem
MeasureTheory.tilted_apply_eq_ofReal_integral
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
[MeasureTheory.SFinite μ]
(f : α → ℝ)
(s : Set α)
:
↑↑(μ.tilted f) s = ENNReal.ofReal (∫ (a : α) in s, Real.exp (f a) / ∫ (x : α), Real.exp (f x) ∂μ ∂μ)
instance
MeasureTheory.isFiniteMeasure_tilted
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
:
MeasureTheory.IsFiniteMeasure (μ.tilted f)
Equations
- (_ : MeasureTheory.IsFiniteMeasure (μ.tilted f)) = (_ : MeasureTheory.IsFiniteMeasure (μ.tilted f))
theorem
MeasureTheory.isProbabilityMeasure_tilted
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
[NeZero μ]
(hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x))
:
MeasureTheory.IsProbabilityMeasure (μ.tilted f)
theorem
MeasureTheory.set_lintegral_tilted'
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
(f : α → ℝ)
(g : α → ENNReal)
{s : Set α}
(hs : MeasurableSet s)
:
theorem
MeasureTheory.set_lintegral_tilted
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
[MeasureTheory.SFinite μ]
(f : α → ℝ)
(g : α → ENNReal)
(s : Set α)
:
theorem
MeasureTheory.lintegral_tilted
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
(f : α → ℝ)
(g : α → ENNReal)
:
theorem
MeasureTheory.set_integral_tilted'
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(f : α → ℝ)
(g : α → E)
{s : Set α}
(hs : MeasurableSet s)
:
theorem
MeasureTheory.set_integral_tilted
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[MeasureTheory.SFinite μ]
(f : α → ℝ)
(g : α → E)
(s : Set α)
:
theorem
MeasureTheory.integral_tilted
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(f : α → ℝ)
(g : α → E)
:
theorem
MeasureTheory.integral_exp_tilted
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
(f : α → ℝ)
(g : α → ℝ)
:
theorem
MeasureTheory.tilted_tilted
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x))
(g : α → ℝ)
:
theorem
MeasureTheory.tilted_comm
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x))
{g : α → ℝ}
(hg : MeasureTheory.Integrable fun (x : α) => Real.exp (g x))
:
(μ.tilted f).tilted g = (μ.tilted g).tilted f
@[simp]
theorem
MeasureTheory.tilted_neg_same'
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x))
:
@[simp]
theorem
MeasureTheory.tilted_neg_same
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
[MeasureTheory.IsProbabilityMeasure μ]
(hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x))
:
theorem
MeasureTheory.tilted_absolutelyContinuous
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(f : α → ℝ)
:
MeasureTheory.Measure.AbsolutelyContinuous (μ.tilted f) μ
theorem
MeasureTheory.absolutelyContinuous_tilted
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x))
:
MeasureTheory.Measure.AbsolutelyContinuous μ (μ.tilted f)
theorem
MeasureTheory.rnDeriv_tilted_right
{α : Type u_1}
{mα : MeasurableSpace α}
{f : α → ℝ}
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.SigmaFinite μ]
[MeasureTheory.SigmaFinite ν]
(hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x))
:
MeasureTheory.Measure.rnDeriv μ (ν.tilted f) =ᶠ[MeasureTheory.Measure.ae ν] fun (x : α) =>
ENNReal.ofReal (Real.exp (-f x) * ∫ (x : α), Real.exp (f x) ∂ν) * MeasureTheory.Measure.rnDeriv μ ν x
theorem
MeasureTheory.toReal_rnDeriv_tilted_right
{α : Type u_1}
{mα : MeasurableSpace α}
{f : α → ℝ}
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.SigmaFinite μ]
[MeasureTheory.SigmaFinite ν]
(hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x))
:
(fun (x : α) => ENNReal.toReal (MeasureTheory.Measure.rnDeriv μ (ν.tilted f) x)) =ᶠ[MeasureTheory.Measure.ae ν] fun (x : α) => (Real.exp (-f x) * ∫ (x : α), Real.exp (f x) ∂ν) * ENNReal.toReal (MeasureTheory.Measure.rnDeriv μ ν x)
theorem
MeasureTheory.rnDeriv_tilted_left
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
{ν : MeasureTheory.Measure α}
[MeasureTheory.SigmaFinite μ]
[MeasureTheory.SigmaFinite ν]
(hfμ : AEMeasurable f)
(hfν : AEMeasurable f)
:
MeasureTheory.Measure.rnDeriv (μ.tilted f) ν =ᶠ[MeasureTheory.Measure.ae ν] fun (x : α) =>
ENNReal.ofReal (Real.exp (f x) / ∫ (x : α), Real.exp (f x) ∂μ) * MeasureTheory.Measure.rnDeriv μ ν x
theorem
MeasureTheory.toReal_rnDeriv_tilted_left
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
{ν : MeasureTheory.Measure α}
[MeasureTheory.SigmaFinite μ]
[MeasureTheory.SigmaFinite ν]
(hfμ : AEMeasurable f)
(hfν : AEMeasurable f)
:
(fun (x : α) => ENNReal.toReal (MeasureTheory.Measure.rnDeriv (μ.tilted f) ν x)) =ᶠ[MeasureTheory.Measure.ae ν] fun (x : α) => (Real.exp (f x) / ∫ (x : α), Real.exp (f x) ∂μ) * ENNReal.toReal (MeasureTheory.Measure.rnDeriv μ ν x)
theorem
MeasureTheory.rnDeriv_tilted_left_self
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
[MeasureTheory.SigmaFinite μ]
(hf : AEMeasurable f)
:
MeasureTheory.Measure.rnDeriv (μ.tilted f) μ =ᶠ[MeasureTheory.Measure.ae μ] fun (x : α) =>
ENNReal.ofReal (Real.exp (f x) / ∫ (x : α), Real.exp (f x) ∂μ)
theorem
MeasureTheory.log_rnDeriv_tilted_left_self
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
[MeasureTheory.SigmaFinite μ]
(hf : MeasureTheory.Integrable fun (x : α) => Real.exp (f x))
:
(fun (x : α) =>
Real.log (ENNReal.toReal (MeasureTheory.Measure.rnDeriv (μ.tilted f) μ x))) =ᶠ[MeasureTheory.Measure.ae μ] fun (x : α) => f x - Real.log (∫ (x : α), Real.exp (f x) ∂μ)