Vector measure defined by an integral #
Given a measure μ
and an integrable function f : α → E
, we can define a vector measure v
such
that for all measurable set s
, v i = ∫ x in s, f x ∂μ
. This definition is useful for
the Radon-Nikodym theorem for signed measures.
Main definitions #
MeasureTheory.Measure.withDensityᵥ
: the vector measure formed by integrating a functionf
with respect to a measureμ
on some set iff
is integrable, and0
otherwise.
def
MeasureTheory.Measure.withDensityᵥ
{α : Type u_1}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{m : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(f : α → E)
:
Given a measure μ
and an integrable function f
, μ.withDensityᵥ f
is
the vector measure which maps the set s
to ∫ₛ f ∂μ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
MeasureTheory.withDensityᵥ_apply
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → E}
(hf : MeasureTheory.Integrable f)
{s : Set α}
(hs : MeasurableSet s)
:
↑(MeasureTheory.Measure.withDensityᵥ μ f) s = ∫ (x : α) in s, f x ∂μ
@[simp]
theorem
MeasureTheory.withDensityᵥ_zero
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
:
@[simp]
theorem
MeasureTheory.withDensityᵥ_neg
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → E}
:
theorem
MeasureTheory.withDensityᵥ_neg'
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → E}
:
(MeasureTheory.Measure.withDensityᵥ μ fun (x : α) => -f x) = -MeasureTheory.Measure.withDensityᵥ μ f
@[simp]
theorem
MeasureTheory.withDensityᵥ_add
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → E}
{g : α → E}
(hf : MeasureTheory.Integrable f)
(hg : MeasureTheory.Integrable g)
:
theorem
MeasureTheory.withDensityᵥ_add'
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → E}
{g : α → E}
(hf : MeasureTheory.Integrable f)
(hg : MeasureTheory.Integrable g)
:
(MeasureTheory.Measure.withDensityᵥ μ fun (x : α) => f x + g x) = MeasureTheory.Measure.withDensityᵥ μ f + MeasureTheory.Measure.withDensityᵥ μ g
@[simp]
theorem
MeasureTheory.withDensityᵥ_sub
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → E}
{g : α → E}
(hf : MeasureTheory.Integrable f)
(hg : MeasureTheory.Integrable g)
:
theorem
MeasureTheory.withDensityᵥ_sub'
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → E}
{g : α → E}
(hf : MeasureTheory.Integrable f)
(hg : MeasureTheory.Integrable g)
:
(MeasureTheory.Measure.withDensityᵥ μ fun (x : α) => f x - g x) = MeasureTheory.Measure.withDensityᵥ μ f - MeasureTheory.Measure.withDensityᵥ μ g
@[simp]
theorem
MeasureTheory.withDensityᵥ_smul
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{𝕜 : Type u_4}
[NontriviallyNormedField 𝕜]
[NormedSpace 𝕜 E]
[SMulCommClass ℝ 𝕜 E]
(f : α → E)
(r : 𝕜)
:
MeasureTheory.Measure.withDensityᵥ μ (r • f) = r • MeasureTheory.Measure.withDensityᵥ μ f
theorem
MeasureTheory.withDensityᵥ_smul'
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{𝕜 : Type u_4}
[NontriviallyNormedField 𝕜]
[NormedSpace 𝕜 E]
[SMulCommClass ℝ 𝕜 E]
(f : α → E)
(r : 𝕜)
:
(MeasureTheory.Measure.withDensityᵥ μ fun (x : α) => r • f x) = r • MeasureTheory.Measure.withDensityᵥ μ f
theorem
MeasureTheory.withDensityᵥ_smul_eq_withDensityᵥ_withDensity
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → NNReal}
{g : α → E}
(hf : AEMeasurable f)
(hfg : MeasureTheory.Integrable (f • g))
:
MeasureTheory.Measure.withDensityᵥ μ (f • g) = MeasureTheory.Measure.withDensityᵥ (MeasureTheory.Measure.withDensity μ fun (x : α) => ↑(f x)) g
theorem
MeasureTheory.withDensityᵥ_smul_eq_withDensityᵥ_withDensity'
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → ENNReal}
{g : α → E}
(hf : AEMeasurable f)
(hflt : ∀ᵐ (x : α) ∂μ, f x < ⊤)
(hfg : MeasureTheory.Integrable fun (x : α) => ENNReal.toReal (f x) • g x)
:
(MeasureTheory.Measure.withDensityᵥ μ fun (x : α) => ENNReal.toReal (f x) • g x) = MeasureTheory.Measure.withDensityᵥ (MeasureTheory.Measure.withDensity μ f) g
theorem
MeasureTheory.Measure.withDensityᵥ_absolutelyContinuous
{α : Type u_1}
{m : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(f : α → ℝ)
:
theorem
MeasureTheory.Integrable.ae_eq_of_withDensityᵥ_eq
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{f : α → E}
{g : α → E}
(hf : MeasureTheory.Integrable f)
(hg : MeasureTheory.Integrable g)
(hfg : MeasureTheory.Measure.withDensityᵥ μ f = MeasureTheory.Measure.withDensityᵥ μ g)
:
Having the same density implies the underlying functions are equal almost everywhere.
theorem
MeasureTheory.WithDensityᵥEq.congr_ae
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → E}
{g : α → E}
(h : f =ᶠ[MeasureTheory.Measure.ae μ] g)
:
theorem
MeasureTheory.Integrable.withDensityᵥ_eq_iff
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{f : α → E}
{g : α → E}
(hf : MeasureTheory.Integrable f)
(hg : MeasureTheory.Integrable g)
:
theorem
MeasureTheory.withDensityᵥ_toReal
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ENNReal}
(hfm : AEMeasurable f)
(hf : ∫⁻ (x : α), f x ∂μ ≠ ⊤)
:
(MeasureTheory.Measure.withDensityᵥ μ fun (x : α) => ENNReal.toReal (f x)) = MeasureTheory.Measure.toSignedMeasure (MeasureTheory.Measure.withDensity μ f)
theorem
MeasureTheory.withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hfi : MeasureTheory.Integrable f)
:
MeasureTheory.Measure.withDensityᵥ μ f = MeasureTheory.Measure.toSignedMeasure (MeasureTheory.Measure.withDensity μ fun (x : α) => ENNReal.ofReal (f x)) - MeasureTheory.Measure.toSignedMeasure (MeasureTheory.Measure.withDensity μ fun (x : α) => ENNReal.ofReal (-f x))
theorem
MeasureTheory.Integrable.withDensityᵥ_trim_eq_integral
{α : Type u_1}
{m : MeasurableSpace α}
{m0 : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
(hm : m ≤ m0)
{f : α → ℝ}
(hf : MeasureTheory.Integrable f)
{i : Set α}
(hi : MeasurableSet i)
:
↑(MeasureTheory.VectorMeasure.trim (MeasureTheory.Measure.withDensityᵥ μ f) hm) i = ∫ (x : α) in i, f x ∂μ
theorem
MeasureTheory.Integrable.withDensityᵥ_trim_absolutelyContinuous
{α : Type u_1}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → E}
{m : MeasurableSpace α}
{m0 : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
(hm : m ≤ m0)
(hfi : MeasureTheory.Integrable f)
: