Making a term in the language of rings from an element of the FreeCommRing #
This file defines the function FirstOrder.Ring.termOfFreeCommRing
which constructs a
Language.ring.Term α
from an element of FreeCommRing α
.
The theorem FirstOrder.Ring.realize_termOfFreeCommRing
shows that the term constructed when
realized in a ring R
is equal to the lift of the element of FreeCommRing α
to R
.
Make a Language.ring.Term α
from an element of FreeCommRing α
Equations
- FirstOrder.Ring.termOfFreeCommRing p = Classical.choose (_ : ∃ (t : FirstOrder.Language.Term FirstOrder.Language.ring α), FirstOrder.Language.Term.realize FreeCommRing.of t = p)
Instances For
@[simp]
theorem
FirstOrder.Ring.realize_termOfFreeCommRing
{α : Type u_1}
{R : Type u_2}
[CommRing R]
[FirstOrder.Ring.CompatibleRing R]
(p : FreeCommRing α)
(v : α → R)
:
FirstOrder.Language.Term.realize v (FirstOrder.Ring.termOfFreeCommRing p) = (FreeCommRing.lift v) p