Documentation

Mathlib.NumberTheory.Cyclotomic.Gal

Galois group of cyclotomic extensions #

In this file, we show the relationship between the Galois group of K(ΞΆβ‚™) and (ZMod n)Λ£; it is always a subgroup, and if the nth cyclotomic polynomial is irreducible, they are isomorphic.

Main results #

References #

TODO #

theorem IsPrimitiveRoot.autToPow_injective {n : β„•+} (K : Type u_1) [Field K] {L : Type u_2} {ΞΌ : L} [CommRing L] [IsDomain L] (hΞΌ : IsPrimitiveRoot ΞΌ ↑n) [Algebra K L] [IsCyclotomicExtension {n} K L] :

IsPrimitiveRoot.autToPow is injective in the case that it's considered over a cyclotomic field extension.

noncomputable def IsCyclotomicExtension.Aut.commGroup {n : β„•+} (K : Type u_1) [Field K] {L : Type u_2} [CommRing L] [IsDomain L] [Algebra K L] [IsCyclotomicExtension {n} K L] :

Cyclotomic extensions are abelian.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem IsCyclotomicExtension.autEquivPow_apply {n : β„•+} {K : Type u_1} [Field K] (L : Type u_2) [CommRing L] [IsDomain L] [Algebra K L] [IsCyclotomicExtension {n} K L] (h : Irreducible (Polynomial.cyclotomic (↑n) K)) :
    noncomputable def IsCyclotomicExtension.autEquivPow {n : β„•+} {K : Type u_1} [Field K] (L : Type u_2) [CommRing L] [IsDomain L] [Algebra K L] [IsCyclotomicExtension {n} K L] (h : Irreducible (Polynomial.cyclotomic (↑n) K)) :

    The MulEquiv that takes an automorphism f to the element k : (ZMod n)Λ£ such that f ΞΌ = ΞΌ ^ k for any root of unity ΞΌ. A strengthening of IsPrimitiveRoot.autToPow.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def IsCyclotomicExtension.fromZetaAut {n : β„•+} {K : Type u_1} [Field K] {L : Type u_2} {ΞΌ : L} [CommRing L] [IsDomain L] (hΞΌ : IsPrimitiveRoot ΞΌ ↑n) [Algebra K L] [IsCyclotomicExtension {n} K L] (h : Irreducible (Polynomial.cyclotomic (↑n) K)) :

      Maps ΞΌ to the AlgEquiv that sends IsCyclotomicExtension.zeta to ΞΌ.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem IsCyclotomicExtension.fromZetaAut_spec {n : β„•+} {K : Type u_1} [Field K] {L : Type u_2} {ΞΌ : L} [CommRing L] [IsDomain L] (hΞΌ : IsPrimitiveRoot ΞΌ ↑n) [Algebra K L] [IsCyclotomicExtension {n} K L] (h : Irreducible (Polynomial.cyclotomic (↑n) K)) :
        noncomputable def galCyclotomicEquivUnitsZMod {n : β„•+} {K : Type u_1} [Field K] {L : Type u_2} [Field L] [Algebra K L] [IsCyclotomicExtension {n} K L] (h : Irreducible (Polynomial.cyclotomic (↑n) K)) :

        IsCyclotomicExtension.autEquivPow repackaged in terms of gal. Asserts that the Galois group of cyclotomic n K is equivalent to (ZMod n)Λ£ if cyclotomic n K is irreducible in the base field.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          noncomputable def galXPowEquivUnitsZMod {n : β„•+} {K : Type u_1} [Field K] {L : Type u_2} [Field L] [Algebra K L] [IsCyclotomicExtension {n} K L] (h : Irreducible (Polynomial.cyclotomic (↑n) K)) :
          Polynomial.Gal (Polynomial.X ^ ↑n - 1) ≃* (ZMod ↑n)Λ£

          IsCyclotomicExtension.autEquivPow repackaged in terms of gal. Asserts that the Galois group of X ^ n - 1 is equivalent to (ZMod n)Λ£ if cyclotomic n K is irreducible in the base field.

          Equations
          Instances For