L-series #
Given an arithmetic function, we define the corresponding L-series.
Main Definitions #
ArithmeticFunction.LSeries
is theLSeries
with a given arithmetic function as its coefficients. This is not the analytic continuation, just the infinite series.ArithmeticFunction.LSeriesSummable
indicates that theLSeries
converges at a given point.
Main Results #
ArithmeticFunction.LSeriesSummable_of_bounded_of_one_lt_real
: theLSeries
of a bounded arithmetic function converges when1 < z.re
.ArithmeticFunction.zeta_LSeriesSummable_iff_one_lt_re
: theLSeries
ofζ
(whose analytic continuation is the Riemann ζ) converges iff1 < z.re
.
The L-series of an ArithmeticFunction
.
Equations
- ArithmeticFunction.LSeries f z = ∑' (n : ℕ), f n / ↑n ^ z
Instances For
f.LSeriesSummable z
indicates that the L-series of f
converges at z
.
Instances For
theorem
ArithmeticFunction.LSeries_eq_zero_of_not_LSeriesSummable
(f : ArithmeticFunction ℂ)
(z : ℂ)
:
@[simp]
theorem
ArithmeticFunction.LSeriesSummable_of_bounded_of_one_lt_real
{f : ArithmeticFunction ℂ}
{m : ℝ}
(h : ∀ (n : ℕ), Complex.abs (f n) ≤ m)
{z : ℝ}
(hz : 1 < z)
:
theorem
ArithmeticFunction.LSeriesSummable_iff_of_re_eq_re
{f : ArithmeticFunction ℂ}
{w : ℂ}
{z : ℂ}
(h : w.re = z.re)
:
theorem
ArithmeticFunction.LSeriesSummable_of_bounded_of_one_lt_re
{f : ArithmeticFunction ℂ}
{m : ℝ}
(h : ∀ (n : ℕ), Complex.abs (f n) ≤ m)
{z : ℂ}
(hz : 1 < z.re)
:
theorem
ArithmeticFunction.zeta_LSeriesSummable_iff_one_lt_re
{z : ℂ}
:
ArithmeticFunction.LSeriesSummable (↑ArithmeticFunction.zeta) z ↔ 1 < z.re
@[simp]
theorem
ArithmeticFunction.LSeries_add
{f : ArithmeticFunction ℂ}
{g : ArithmeticFunction ℂ}
{z : ℂ}
(hf : ArithmeticFunction.LSeriesSummable f z)
(hg : ArithmeticFunction.LSeriesSummable g z)
:
ArithmeticFunction.LSeries (f + g) z = ArithmeticFunction.LSeries f z + ArithmeticFunction.LSeries g z