Documentation

Mathlib.NumberTheory.LegendreSymbol.AddCharacter

Additive characters of finite rings and fields #

Let R be a finite commutative ring. An additive character of R with values in another commutative ring R' is simply a morphism from the additive group of R into the multiplicative monoid of R'.

The additive characters on R with values in R' form a commutative group.

We use the namespace AddChar.

Main definitions and results #

We define mulShift ψ a, where ψ : AddChar R R' and a : R, to be the character defined by x ↦ ψ (a * x). An additive character ψ is primitive if mulShift ψ a is trivial only when a = 0.

We show that when ψ is primitive, then the map a ↦ mulShift ψ a is injective (AddChar.to_mulShift_inj_of_isPrimitive) and that ψ is primitive when R is a field and ψ is nontrivial (AddChar.IsNontrivial.isPrimitive).

We also show that there are primitive additive characters on R (with suitable target R') when R is a field or R = ZMod n (AddChar.primitiveCharFiniteField and AddChar.primitiveZModChar).

Finally, we show that the sum of all character values is zero when the character is nontrivial (and the target is a domain); see AddChar.sum_eq_zero_of_isNontrivial.

Tags #

additive character

def AddChar (R : Type u) [AddMonoid R] (R' : Type v) [CommMonoid R'] :
Type (max u v)

Define AddChar R R' as (Multiplicative R) →* R'. The definition works for an additive monoid R and a monoid R', but we will restrict to the case that both are commutative rings below. We assume right away that R' is commutative, so that AddChar R R' carries a structure of commutative monoid. The trivial additive character (sending everything to 1) is (1 : AddChar R R').

Equations
Instances For
    def AddChar.toMonoidHom {R : Type u} [AddMonoid R] {R' : Type v} [CommMonoid R'] :

    Interpret an additive character as a monoid homomorphism.

    Equations
    • AddChar.toMonoidHom = id
    Instances For
      instance AddChar.instFunLike {R : Type u} [AddMonoid R] {R' : Type v} [CommMonoid R'] :
      FunLike (AddChar R R') R R'

      Define coercion to a function so that it includes the move from R to Multiplicative R. After we have proved the API lemmas below, we don't need to worry about writing ofAdd a when we want to apply an additive character.

      Equations
      theorem AddChar.coe_to_fun_apply {R : Type u} [AddMonoid R] {R' : Type v} [CommMonoid R'] (ψ : AddChar R R') (a : R) :
      ψ a = (AddChar.toMonoidHom ψ) (Multiplicative.ofAdd a)
      theorem AddChar.mul_apply {R : Type u} [AddMonoid R] {R' : Type v} [CommMonoid R'] (ψ : AddChar R R') (φ : AddChar R R') (a : R) :
      (ψ * φ) a = ψ a * φ a
      @[simp]
      theorem AddChar.one_apply {R : Type u} [AddMonoid R] {R' : Type v} [CommMonoid R'] (a : R) :
      1 a = 1
      theorem AddChar.ext {R : Type u} [AddMonoid R] {R' : Type v} [CommMonoid R'] (f : AddChar R R') (g : AddChar R R') (h : ∀ (x : R), f x = g x) :
      f = g
      @[simp]
      theorem AddChar.map_zero_one {R : Type u} [AddMonoid R] {R' : Type v} [CommMonoid R'] (ψ : AddChar R R') :
      ψ 0 = 1

      An additive character maps 0 to 1.

      @[simp]
      theorem AddChar.map_add_mul {R : Type u} [AddMonoid R] {R' : Type v} [CommMonoid R'] (ψ : AddChar R R') (x : R) (y : R) :
      ψ (x + y) = ψ x * ψ y

      An additive character maps sums to products.

      @[simp]
      theorem AddChar.map_nsmul_pow {R : Type u} [AddMonoid R] {R' : Type v} [CommMonoid R'] (ψ : AddChar R R') (n : ) (x : R) :
      ψ (n x) = ψ x ^ n

      An additive character maps multiples by natural numbers to powers.

      instance AddChar.hasInv {R : Type u} [AddCommGroup R] {R' : Type v} [CommMonoid R'] :
      Inv (AddChar R R')

      An additive character on a commutative additive group has an inverse.

      Note that this is a different inverse to the one provided by MonoidHom.inv, as it acts on the domain instead of the codomain.

      Equations
      theorem AddChar.inv_apply {R : Type u} [AddCommGroup R] {R' : Type v} [CommMonoid R'] (ψ : AddChar R R') (x : R) :
      ψ⁻¹ x = ψ (-x)
      @[simp]
      theorem AddChar.map_zsmul_zpow {R : Type u} [AddCommGroup R] {R' : Type v} [CommGroup R'] (ψ : AddChar R R') (n : ) (x : R) :
      ψ (n x) = ψ x ^ n

      An additive character maps multiples by integers to powers.

      instance AddChar.commGroup {R : Type u} [AddCommGroup R] {R' : Type v} [CommMonoid R'] :

      The additive characters on a commutative additive group form a commutative group.

      Equations
      def AddChar.IsNontrivial {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] (ψ : AddChar R R') :

      An additive character is nontrivial if it takes a value ≠ 1.

      Equations
      Instances For
        theorem AddChar.isNontrivial_iff_ne_trivial {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] (ψ : AddChar R R') :

        An additive character is nontrivial iff it is not the trivial character.

        def AddChar.mulShift {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] (ψ : AddChar R R') (a : R) :
        AddChar R R'

        Define the multiplicative shift of an additive character. This satisfies mulShift ψ a x = ψ (a * x).

        Equations
        Instances For
          @[simp]
          theorem AddChar.mulShift_apply {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] {ψ : AddChar R R'} {a : R} {x : R} :
          (AddChar.mulShift ψ a) x = ψ (a * x)
          theorem AddChar.inv_mulShift {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] (ψ : AddChar R R') :

          ψ⁻¹ = mulShift ψ (-1)).

          theorem AddChar.mulShift_spec' {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] (ψ : AddChar R R') (n : ) (x : R) :
          (AddChar.mulShift ψ n) x = ψ x ^ n

          If n is a natural number, then mulShift ψ n x = (ψ x) ^ n.

          theorem AddChar.pow_mulShift {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] (ψ : AddChar R R') (n : ) :
          ψ ^ n = AddChar.mulShift ψ n

          If n is a natural number, then ψ ^ n = mulShift ψ n.

          theorem AddChar.mulShift_mul {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] (ψ : AddChar R R') (a : R) (b : R) :

          The product of mulShift ψ a and mulShift ψ b is mulShift ψ (a + b).

          @[simp]
          theorem AddChar.mulShift_zero {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] (ψ : AddChar R R') :

          mulShift ψ 0 is the trivial character.

          def AddChar.IsPrimitive {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] (ψ : AddChar R R') :

          An additive character is primitive iff all its multiplicative shifts by nonzero elements are nontrivial.

          Equations
          Instances For

            The map associating to a : R the multiplicative shift of ψ by a is injective when ψ is primitive.

            theorem AddChar.IsNontrivial.isPrimitive {R' : Type v} [CommRing R'] {F : Type u} [Field F] {ψ : AddChar F R'} (hψ : AddChar.IsNontrivial ψ) :

            When R is a field F, then a nontrivial additive character is primitive

            def AddChar.PrimitiveAddChar (R : Type u) [CommRing R] (R' : Type v) [Field R'] :
            Type (max u v)

            Definition for a primitive additive character on a finite ring R into a cyclotomic extension of a field R'. It records which cyclotomic extension it is, the character, and the fact that the character is primitive.

            Equations
            Instances For
              noncomputable def AddChar.PrimitiveAddChar.n {R : Type u} [CommRing R] {R' : Type v} [Field R'] :

              The first projection from PrimitiveAddChar, giving the cyclotomic field.

              Equations
              Instances For

                The second projection from PrimitiveAddChar, giving the character.

                Equations
                Instances For

                  The third projection from PrimitiveAddChar, showing that χ.2 is primitive.

                  Additive characters on ZMod n #

                  def AddChar.zmodChar {C : Type v} [CommRing C] (n : ℕ+) {ζ : C} (hζ : ζ ^ n = 1) :
                  AddChar (ZMod n) C

                  We can define an additive character on ZMod n when we have an nth root of unity ζ : C.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem AddChar.zmodChar_apply {C : Type v} [CommRing C] {n : ℕ+} {ζ : C} (hζ : ζ ^ n = 1) (a : ZMod n) :
                    (AddChar.zmodChar n ) a = ζ ^ ZMod.val a

                    The additive character on ZMod n defined using ζ sends a to ζ^a.

                    theorem AddChar.zmodChar_apply' {C : Type v} [CommRing C] {n : ℕ+} {ζ : C} (hζ : ζ ^ n = 1) (a : ) :
                    (AddChar.zmodChar n ) a = ζ ^ a
                    theorem AddChar.zmod_char_isNontrivial_iff {C : Type v} [CommRing C] (n : ℕ+) (ψ : AddChar (ZMod n) C) :

                    An additive character on ZMod n is nontrivial iff it takes a value ≠ 1 on 1.

                    theorem AddChar.IsPrimitive.zmod_char_eq_one_iff {C : Type v} [CommRing C] (n : ℕ+) {ψ : AddChar (ZMod n) C} (hψ : AddChar.IsPrimitive ψ) (a : ZMod n) :
                    ψ a = 1 a = 0

                    A primitive additive character on ZMod n takes the value 1 only at 0.

                    theorem AddChar.zmod_char_primitive_of_eq_one_only_at_zero {C : Type v} [CommRing C] (n : ) (ψ : AddChar (ZMod n) C) (hψ : ∀ (a : ZMod n), ψ a = 1a = 0) :

                    The converse: if the additive character takes the value 1 only at 0, then it is primitive.

                    theorem AddChar.zmodChar_primitive_of_primitive_root {C : Type v} [CommRing C] (n : ℕ+) {ζ : C} (h : IsPrimitiveRoot ζ n) :

                    The additive character on ZMod n associated to a primitive nth root of unity is primitive

                    noncomputable def AddChar.primitiveZModChar (n : ℕ+) (F' : Type v) [Field F'] (h : n 0) :

                    There is a primitive additive character on ZMod n if the characteristic of the target does not divide n

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      Existence of a primitive additive character on a finite field #

                      noncomputable def AddChar.primitiveCharFiniteField (F : Type u_1) (F' : Type u_2) [Field F] [Fintype F] [Field F'] (h : ringChar F' ringChar F) :

                      There is a primitive additive character on the finite field F if the characteristic of the target is different from that of F. We obtain it as the composition of the trace from F to ZMod p with a primitive additive character on ZMod p, where p is the characteristic of F.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        The sum of all character values #

                        theorem AddChar.sum_eq_zero_of_isNontrivial {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] [Fintype R] [IsDomain R'] {ψ : AddChar R R'} (hψ : AddChar.IsNontrivial ψ) :
                        (Finset.sum Finset.univ fun (a : R) => ψ a) = 0

                        The sum over the values of a nontrivial additive character vanishes if the target ring is a domain.

                        theorem AddChar.sum_eq_card_of_is_trivial {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] [Fintype R] {ψ : AddChar R R'} (hψ : ¬AddChar.IsNontrivial ψ) :
                        (Finset.sum Finset.univ fun (a : R) => ψ a) = (Fintype.card R)

                        The sum over the values of the trivial additive character is the cardinality of the source.

                        theorem AddChar.sum_mulShift {R : Type u} [CommRing R] {R' : Type v} [CommRing R'] [Fintype R] [DecidableEq R] [IsDomain R'] {ψ : AddChar R R'} (b : R) (hψ : AddChar.IsPrimitive ψ) :
                        (Finset.sum Finset.univ fun (x : R) => ψ (x * b)) = (if b = 0 then Fintype.card R else 0)

                        The sum over the values of mulShift ψ b for ψ primitive is zero when b ≠ 0 and #R otherwise.