Congruence subgroups #
This defines congruence subgroups of SL(2, ℤ)
such as Γ(N)
, Γ₀(N)
and Γ₁(N)
for N
a
natural number.
It also contains basic results about congruence subgroups.
@[simp]
theorem
SL_reduction_mod_hom_val
(N : ℕ)
(γ : Matrix.SpecialLinearGroup (Fin 2) ℤ)
(i : Fin 2)
(j : Fin 2)
:
↑((Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) γ) i j = ↑(↑γ i j)
The full level N
congruence subgroup of SL(2, ℤ)
of matrices that reduce to the identity
modulo N
.
Equations
Instances For
theorem
Gamma_mem'
(N : ℕ)
(γ : Matrix.SpecialLinearGroup (Fin 2) ℤ)
:
γ ∈ Gamma N ↔ (Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) γ = 1
@[simp]
The congruence subgroup Gamma1
of SL(2, ℤ)
consisting of matrices whose bottom
row is congruent to (0,1)
modulo N
.
Equations
- Gamma1 N = Subgroup.map (MonoidHom.comp (Subgroup.subtype (Gamma0 N)) (Subgroup.subtype (Gamma1' N))) ⊤
Instances For
theorem
isCongruenceSubgroup_trans
(H : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(K : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(h : H ≤ K)
(h2 : IsCongruenceSubgroup H)
:
theorem
conj_cong_is_cong
(g : ConjAct (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(h : IsCongruenceSubgroup Γ)
:
IsCongruenceSubgroup (g • Γ)