Jacobi's theta function #
This file defines the Jacobi theta function
$$\theta(\tau) = \sum_{n \in \mathbb{Z}} \exp (i \pi n ^ 2 \tau),$$
and proves the modular transformation properties θ (τ + 2) = θ τ
and
θ (-1 / τ) = (-I * τ) ^ (1 / 2) * θ τ
, using Poisson's summation formula for the latter. We also
show that θ
is differentiable on ℍ
, and θ(τ) - 1
has exponential decay as im τ → ∞
.
Jacobi's theta function ∑' (n : ℤ), exp (π * I * n ^ 2 * τ)
.
Equations
- jacobiTheta z = ∑' (n : ℤ), Complex.exp (↑Real.pi * Complex.I * ↑n ^ 2 * z)
Instances For
theorem
jacobiTheta_T_sq_smul
(τ : UpperHalfPlane)
:
jacobiTheta ↑(ModularGroup.T ^ 2 • τ) = jacobiTheta ↑τ
theorem
jacobiTheta_S_smul
(τ : UpperHalfPlane)
:
jacobiTheta ↑(ModularGroup.S • τ) = (-Complex.I * ↑τ) ^ (1 / 2) * jacobiTheta ↑τ
theorem
isBigO_at_im_infty_jacobiTheta_sub_one :
(fun (τ : ℂ) => jacobiTheta τ - 1) =O[Filter.comap Complex.im Filter.atTop] fun (τ : ℂ) => Real.exp (-Real.pi * τ.im)
The norm of jacobiTheta τ - 1
decays exponentially as im τ → ∞
.