Documentation

Mathlib.NumberTheory.ModularForms.JacobiTheta.TwoVariable

The two-variable Jacobi theta function #

This file defines the two-variable Jacobi theta function

$$\theta(z, \tau) = \sum_{n \in \mathbb{Z}} \exp (2 i \pi n z + i \pi n ^ 2 \tau),$$

and proves the functional equation relating the values at (z, τ) and (z / τ, -1 / τ), using Poisson's summation formula. We also show holomorphy (in both variables individually, not jointly).

noncomputable def jacobiTheta₂ (z : ) (τ : ) :

The two-variable Jacobi theta function, θ z τ = ∑' (n : ℤ), cexp (2 * π * I * n * z + π * I * n ^ 2 * τ).

The sum is only convergent for 0 < im τ; we are implictly extending it by 0 for other values of τ.

Equations
Instances For
    theorem jacobiTheta₂_term_bound {S : } {T : } (hT : 0 < T) {z : } {τ : } (hz : |z.im| S) (hτ : T τ.im) (n : ) :
    Complex.exp (2 * Real.pi * Complex.I * n * z + Real.pi * Complex.I * n ^ 2 * τ) Real.exp (-Real.pi * (T * n ^ 2 - 2 * S * |n|))

    A uniform bound for the summands in the Jacobi theta function on compact subsets.

    theorem summable_jacobiTheta₂_term_bound (S : ) {T : } (hT : 0 < T) :
    Summable fun (n : ) => Real.exp (-Real.pi * (T * n ^ 2 - 2 * S * |n|))
    theorem differentiableAt_jacobiTheta₂ (z : ) {τ : } (hτ : 0 < τ.im) :

    Differentiability of Θ z τ in τ, for fixed z. (This is weaker than differentiability in both variables simultaneously, but we do not have a version of differentiableOn_tsum_of_summable_norm in multiple variables yet.)

    theorem jacobiTheta₂_add_right (z : ) (τ : ) :

    The two-variable Jacobi theta function is periodic in τ with period 2.

    theorem jacobiTheta₂_add_left (z : ) (τ : ) :

    The two-variable Jacobi theta function is periodic in z with period 1.

    theorem jacobiTheta₂_add_left' (z : ) (τ : ) :

    The two-variable Jacobi theta function is quasi-periodic in z with period τ.

    The two-variable Jacobi theta function is even in z.

    theorem jacobiTheta₂_functional_equation (z : ) {τ : } (hτ : 0 < τ.im) :
    jacobiTheta₂ z τ = 1 / (-Complex.I * τ) ^ (1 / 2) * Complex.exp (-Real.pi * Complex.I * z ^ 2 / τ) * jacobiTheta₂ (z / τ) (-1 / τ)

    The functional equation for the Jacobi theta function: jacobiTheta₂ x τ is an explict factor times jacobiTheta₂ (x / τ) (-1 / τ). This is the key lemma behind the proof of the functional equation for Dirichlet L-series.