Multiplicity in Number Theory #
This file contains results in number theory relating to multiplicity.
Main statements #
multiplicity.Int.pow_sub_pow
is the lifting the exponent lemma for odd primes. We also prove several variations of the lemma.
References #
- [Wikipedia, Lifting-the-exponent lemma] (https://en.wikipedia.org/wiki/Lifting-the-exponent_lemma)
theorem
multiplicity.geom_sum₂_eq_one
{R : Type u_1}
[CommRing R]
{x : R}
{y : R}
{p : ℕ}
[IsDomain R]
[DecidableRel fun (x x_1 : R) => x ∣ x_1]
(hp : Prime ↑p)
(hp1 : Odd p)
(hxy : ↑p ∣ x - y)
(hx : ¬↑p ∣ x)
:
multiplicity (↑p) (Finset.sum (Finset.range p) fun (i : ℕ) => x ^ i * y ^ (p - 1 - i)) = 1
theorem
multiplicity.pow_prime_pow_sub_pow_prime_pow
{R : Type u_1}
[CommRing R]
{x : R}
{y : R}
{p : ℕ}
[IsDomain R]
[DecidableRel fun (x x_1 : R) => x ∣ x_1]
(hp : Prime ↑p)
(hp1 : Odd p)
(hxy : ↑p ∣ x - y)
(hx : ¬↑p ∣ x)
(a : ℕ)
:
multiplicity (↑p) (x ^ p ^ a - y ^ p ^ a) = multiplicity (↑p) (x - y) + ↑a
theorem
Int.two_pow_sub_pow'
{x : ℤ}
{y : ℤ}
(n : ℕ)
(hxy : 4 ∣ x - y)
(hx : ¬2 ∣ x)
:
multiplicity 2 (x ^ n - y ^ n) = multiplicity 2 (x - y) + multiplicity 2 ↑n
theorem
Int.two_pow_sub_pow
{x : ℤ}
{y : ℤ}
{n : ℕ}
(hxy : 2 ∣ x - y)
(hx : ¬2 ∣ x)
(hn : Even n)
:
multiplicity 2 (x ^ n - y ^ n) + 1 = multiplicity 2 (x + y) + multiplicity 2 (x - y) + multiplicity 2 ↑n
Lifting the exponent lemma for p = 2
theorem
Nat.two_pow_sub_pow
{x : ℕ}
{y : ℕ}
(hxy : 2 ∣ x - y)
(hx : ¬2 ∣ x)
{n : ℕ}
(hn : Even n)
:
multiplicity 2 (x ^ n - y ^ n) + 1 = multiplicity 2 (x + y) + multiplicity 2 (x - y) + multiplicity 2 n
theorem
padicValNat.pow_two_sub_pow
{x : ℕ}
{y : ℕ}
(hyx : y < x)
(hxy : 2 ∣ x - y)
(hx : ¬2 ∣ x)
{n : ℕ}
(hn : n ≠ 0)
(hneven : Even n)
:
padicValNat 2 (x ^ n - y ^ n) + 1 = padicValNat 2 (x + y) + padicValNat 2 (x - y) + padicValNat 2 n