Number field discriminant #
This file defines the discriminant of a number field.
Main definitions #
NumberField.discr
: the absolute discriminant of a number field.
Main result #
NumberField.abs_discr_gt_two
: Hermite-Minkowski Theorem. A nontrivial number field has discriminant greater than2
.
Tags #
number field, discriminant
@[inline, reducible]
The absolute discriminant of a number field.
Equations
Instances For
theorem
NumberField.discr_eq_discr
(K : Type u_1)
[Field K]
[NumberField K]
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
(b : Basis ι ℤ ↥(NumberField.ringOfIntegers K))
:
Algebra.discr ℤ ⇑b = NumberField.discr K
theorem
NumberField.discr_eq_discr_of_algEquiv
(K : Type u_1)
[Field K]
[NumberField K]
{L : Type u_2}
[Field L]
[NumberField L]
(f : K ≃ₐ[ℚ] L)
:
theorem
NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis
(K : Type u_1)
[Field K]
[NumberField K]
:
↑↑MeasureTheory.volume (Zspan.fundamentalDomain (NumberField.mixedEmbedding.latticeBasis K)) = 2⁻¹ ^ NumberField.InfinitePlace.NrComplexPlaces K * ↑(NNReal.sqrt ‖NumberField.discr K‖₊)
theorem
NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ)
:
∃ a ∈ ↑I,
a ≠ 0 ∧ ↑|(Algebra.norm ℚ) a| ≤ ↑(FractionalIdeal.absNorm ↑I) * (4 / Real.pi) ^ NumberField.InfinitePlace.NrComplexPlaces K * ↑(Nat.factorial (FiniteDimensional.finrank ℚ K)) / ↑(FiniteDimensional.finrank ℚ K) ^ FiniteDimensional.finrank ℚ K * Real.sqrt |↑(NumberField.discr K)|
theorem
NumberField.exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr
(K : Type u_1)
[Field K]
[NumberField K]
:
∃ (a : ↥(NumberField.ringOfIntegers K)),
a ≠ 0 ∧ ↑|(Algebra.norm ℚ) ↑a| ≤ (4 / Real.pi) ^ NumberField.InfinitePlace.NrComplexPlaces K * ↑(Nat.factorial (FiniteDimensional.finrank ℚ K)) / ↑(FiniteDimensional.finrank ℚ K) ^ FiniteDimensional.finrank ℚ K * Real.sqrt |↑(NumberField.discr K)|
theorem
NumberField.abs_discr_ge
{K : Type u_1}
[Field K]
[NumberField K]
(h : 1 < FiniteDimensional.finrank ℚ K)
:
4 / 9 * (3 * Real.pi / 4) ^ FiniteDimensional.finrank ℚ K ≤ ↑|NumberField.discr K|
theorem
NumberField.abs_discr_gt_two
{K : Type u_1}
[Field K]
[NumberField K]
(h : 1 < FiniteDimensional.finrank ℚ K)
:
2 < |NumberField.discr K|
Hermite-Minkowski Theorem. A nontrivial number field has discriminant greater than 2
.
@[simp]
The absolute discriminant of the number field ℚ
is 1.
theorem
Algebra.discr_eq_discr_of_toMatrix_coeff_isIntegral
{ι : Type u_2}
{ι' : Type u_3}
(K : Type u_1)
[Field K]
[DecidableEq ι]
[DecidableEq ι']
[Fintype ι]
[Fintype ι']
[NumberField K]
{b : Basis ι ℚ K}
{b' : Basis ι' ℚ K}
(h : ∀ (i : ι) (j : ι'), IsIntegral ℤ (Basis.toMatrix b (⇑b') i j))
(h' : ∀ (i : ι') (j : ι), IsIntegral ℤ (Basis.toMatrix b' (⇑b) i j))
:
Algebra.discr ℚ ⇑b = Algebra.discr ℚ ⇑b'
If b
and b'
are ℚ
-bases of a number field K
such that
∀ i j, IsIntegral ℤ (b.toMatrix b' i j)
and ∀ i j, IsIntegral ℤ (b'.toMatrix b i j)
then
discr ℚ b = discr ℚ b'
.