The category of Heyting algebras.
Equations
Instances For
Equations
- HeytAlg.instCoeSortHeytAlgType = CategoryTheory.Bundled.coeSort
Equations
- HeytAlg.instHeytingAlgebraα X = X.str
Equations
- HeytAlg.instInhabitedHeytAlg = { default := HeytAlg.of PUnit.{u_1 + 1} }
Equations
- HeytAlg.bundledHom = CategoryTheory.BundledHom.mk (fun (α β : Type u_1) [HeytingAlgebra α] [HeytingAlgebra β] => DFunLike.coe) HeytingHom.id @HeytingHom.comp
instance
HeytAlg.instHeytingHomClassHomHeytAlgToQuiverToCategoryStructInstHeytAlgLargeCategoryαHeytingAlgebraInstHeytingAlgebraαInstFunLikeHomHeytAlgToQuiverToCategoryStructInstHeytAlgLargeCategoryαHeytingAlgebra
{X : HeytAlg}
{Y : HeytAlg}
:
HeytingHomClass (X ⟶ Y) ↑X ↑Y
Equations
- (_ : HeytingHomClass (X ⟶ Y) ↑X ↑Y) = (_ : HeytingHomClass (HeytingHom ↑X ↑Y) ↑X ↑Y)
@[simp]
theorem
HeytAlg.hasForgetToLat_forget₂_obj
(X : HeytAlg)
:
CategoryTheory.HasForget₂.forget₂.toPrefunctor.obj X = BddDistLat.of ↑X
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
HeytAlg.Iso.mk_inv_toFun
{α : HeytAlg}
{β : HeytAlg}
(e : ↑α ≃o ↑β)
(a : ↑β)
:
(HeytAlg.Iso.mk e).inv a = (OrderIso.symm e) a
@[simp]
theorem
HeytAlg.Iso.mk_hom_toFun
{α : HeytAlg}
{β : HeytAlg}
(e : ↑α ≃o ↑β)
(a : ↑α)
:
(HeytAlg.Iso.mk e).hom a = e a