Equations
- Preord.instCoeSortPreordType = CategoryTheory.Bundled.coeSort
Equations
- Preord.instInhabitedPreord = { default := Preord.of PUnit.{u_1 + 1} }
Equations
- Preord.instPreorderα α = α.str
@[simp]
@[simp]
theorem
Preord.Iso.mk_inv
{α : Preord}
{β : Preord}
(e : ↑α ≃o ↑β)
:
(Preord.Iso.mk e).inv = ↑(OrderIso.symm e)
Constructs an equivalence between preorders from an order isomorphism between them.
Equations
- Preord.Iso.mk e = CategoryTheory.Iso.mk ↑e ↑(OrderIso.symm e)
Instances For
@[simp]
theorem
Preord.dual_map :
∀ {X Y : Preord} (a : ↑X →o ↑Y), Preord.dual.toPrefunctor.map a = OrderHom.dual a
@[simp]
OrderDual
as a functor.
Equations
- Preord.dual = CategoryTheory.Functor.mk { obj := fun (X : Preord) => Preord.of (↑X)ᵒᵈ, map := fun {X Y : Preord} => ⇑OrderHom.dual }
Instances For
@[simp]
@[simp]
theorem
preordToCat_map :
∀ {X Y : Preord} (f : X ⟶ Y), preordToCat.toPrefunctor.map f = Monotone.functor (_ : Monotone ⇑f)
The embedding of Preord
into Cat
.
Equations
- preordToCat = CategoryTheory.Functor.mk { obj := fun (X : Preord) => CategoryTheory.Cat.of ↑X, map := fun {X Y : Preord} (f : X ⟶ Y) => Monotone.functor (_ : Monotone ⇑f) }
Instances For
Equations
- One or more equations did not get rendered due to their size.