Documentation

Mathlib.Order.PrimeIdeal

Prime ideals #

Main definitions #

Throughout this file, P is at least a preorder, but some sections require more structure, such as a bottom element, a top element, or a join-semilattice structure.

References #

Tags #

ideal, prime

structure Order.Ideal.PrimePair (P : Type u_2) [Preorder P] :
Type u_2

A pair of an Order.Ideal and an Order.PFilter which form a partition of P.

Instances For
    theorem Order.Ideal.PrimePair.compl_I_eq_F {P : Type u_1} [Preorder P] (IF : Order.Ideal.PrimePair P) :
    (IF.I) = IF.F
    theorem Order.Ideal.PrimePair.compl_F_eq_I {P : Type u_1} [Preorder P] (IF : Order.Ideal.PrimePair P) :
    (IF.F) = IF.I
    theorem Order.Ideal.PrimePair.disjoint {P : Type u_1} [Preorder P] (IF : Order.Ideal.PrimePair P) :
    Disjoint IF.I IF.F
    theorem Order.Ideal.PrimePair.I_union_F {P : Type u_1} [Preorder P] (IF : Order.Ideal.PrimePair P) :
    IF.I IF.F = Set.univ
    theorem Order.Ideal.PrimePair.F_union_I {P : Type u_1} [Preorder P] (IF : Order.Ideal.PrimePair P) :
    IF.F IF.I = Set.univ

    An ideal I is prime if its complement is a filter.

    Instances

      Create an element of type Order.Ideal.PrimePair from an ideal satisfying the predicate Order.Ideal.IsPrime.

      Equations
      Instances For
        theorem Order.Ideal.IsPrime.mem_or_mem {P : Type u_1} [SemilatticeInf P] {I : Order.Ideal P} (hI : Order.Ideal.IsPrime I) {x : P} {y : P} :
        x y Ix I y I
        theorem Order.Ideal.IsPrime.of_mem_or_mem {P : Type u_1} [SemilatticeInf P] {I : Order.Ideal P} [Order.Ideal.IsProper I] (hI : ∀ {x y : P}, x y Ix I y I) :
        theorem Order.Ideal.IsPrime.mem_compl_of_not_mem {P : Type u_1} [BooleanAlgebra P] {x : P} {I : Order.Ideal P} (hI : Order.Ideal.IsPrime I) (hxnI : xI) :
        x I

        A filter F is prime if its complement is an ideal.

        Instances

          Create an element of type Order.Ideal.PrimePair from a filter satisfying the predicate Order.PFilter.IsPrime.

          Equations
          Instances For