Prime ideals #
Main definitions #
Throughout this file, P
is at least a preorder, but some sections require more
structure, such as a bottom element, a top element, or a join-semilattice structure.
Order.Ideal.PrimePair
: A pair of anOrder.Ideal
and anOrder.PFilter
which form a partition ofP
. This is useful as giving the data of a prime ideal is the same as giving the data of a prime filter.Order.Ideal.IsPrime
: a predicate for prime ideals. Dual to the notion of a prime filter.Order.PFilter.IsPrime
: a predicate for prime filters. Dual to the notion of a prime ideal.
References #
Tags #
ideal, prime
A pair of an Order.Ideal
and an Order.PFilter
which form a partition of P
.
- I : Order.Ideal P
- F : Order.PFilter P
- isCompl_I_F : IsCompl ↑self.I ↑self.F
Instances For
theorem
Order.Ideal.PrimePair.compl_I_eq_F
{P : Type u_1}
[Preorder P]
(IF : Order.Ideal.PrimePair P)
:
theorem
Order.Ideal.PrimePair.compl_F_eq_I
{P : Type u_1}
[Preorder P]
(IF : Order.Ideal.PrimePair P)
:
theorem
Order.Ideal.PrimePair.I_isProper
{P : Type u_1}
[Preorder P]
(IF : Order.Ideal.PrimePair P)
:
Order.Ideal.IsProper IF.I
theorem
Order.Ideal.PrimePair.disjoint
{P : Type u_1}
[Preorder P]
(IF : Order.Ideal.PrimePair P)
:
Disjoint ↑IF.I ↑IF.F
theorem
Order.Ideal.PrimePair.I_union_F
{P : Type u_1}
[Preorder P]
(IF : Order.Ideal.PrimePair P)
:
theorem
Order.Ideal.PrimePair.F_union_I
{P : Type u_1}
[Preorder P]
(IF : Order.Ideal.PrimePair P)
:
class
Order.Ideal.IsPrime
{P : Type u_1}
[Preorder P]
(I : Order.Ideal P)
extends
Order.Ideal.IsProper
:
An ideal I
is prime if its complement is a filter.
- ne_univ : ↑I ≠ Set.univ
- compl_filter : Order.IsPFilter (↑I)ᶜ
Instances
def
Order.Ideal.IsPrime.toPrimePair
{P : Type u_1}
[Preorder P]
{I : Order.Ideal P}
(h : Order.Ideal.IsPrime I)
:
Create an element of type Order.Ideal.PrimePair
from an ideal satisfying the predicate
Order.Ideal.IsPrime
.
Equations
- Order.Ideal.IsPrime.toPrimePair h = { I := I, F := Order.IsPFilter.toPFilter (_ : Order.IsPFilter (↑I)ᶜ), isCompl_I_F := (_ : IsCompl (↑I) (↑I)ᶜ) }
Instances For
theorem
Order.Ideal.PrimePair.I_isPrime
{P : Type u_1}
[Preorder P]
(IF : Order.Ideal.PrimePair P)
:
Order.Ideal.IsPrime IF.I
theorem
Order.Ideal.IsPrime.mem_or_mem
{P : Type u_1}
[SemilatticeInf P]
{I : Order.Ideal P}
(hI : Order.Ideal.IsPrime I)
{x : P}
{y : P}
:
theorem
Order.Ideal.IsPrime.of_mem_or_mem
{P : Type u_1}
[SemilatticeInf P]
{I : Order.Ideal P}
[Order.Ideal.IsProper I]
(hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I)
:
theorem
Order.Ideal.isPrime_iff_mem_or_mem
{P : Type u_1}
[SemilatticeInf P]
{I : Order.Ideal P}
[Order.Ideal.IsProper I]
:
instance
Order.Ideal.IsMaximal.isPrime
{P : Type u_1}
[DistribLattice P]
{I : Order.Ideal P}
[Order.Ideal.IsMaximal I]
:
Equations
- (_ : Order.Ideal.IsPrime I) = (_ : Order.Ideal.IsPrime I)
theorem
Order.Ideal.IsPrime.mem_or_compl_mem
{P : Type u_1}
[BooleanAlgebra P]
{x : P}
{I : Order.Ideal P}
(hI : Order.Ideal.IsPrime I)
:
theorem
Order.Ideal.IsPrime.mem_compl_of_not_mem
{P : Type u_1}
[BooleanAlgebra P]
{x : P}
{I : Order.Ideal P}
(hI : Order.Ideal.IsPrime I)
(hxnI : x ∉ I)
:
theorem
Order.Ideal.isPrime_of_mem_or_compl_mem
{P : Type u_1}
[BooleanAlgebra P]
{I : Order.Ideal P}
[Order.Ideal.IsProper I]
(h : ∀ {x : P}, x ∈ I ∨ xᶜ ∈ I)
:
theorem
Order.Ideal.isPrime_iff_mem_or_compl_mem
{P : Type u_1}
[BooleanAlgebra P]
{I : Order.Ideal P}
[Order.Ideal.IsProper I]
:
instance
Order.Ideal.IsPrime.isMaximal
{P : Type u_1}
[BooleanAlgebra P]
{I : Order.Ideal P}
[Order.Ideal.IsPrime I]
:
Equations
- (_ : Order.Ideal.IsMaximal I) = (_ : Order.Ideal.IsMaximal I)
theorem
Order.PFilter.isPrime_iff
{P : Type u_1}
[Preorder P]
(F : Order.PFilter P)
:
Order.PFilter.IsPrime F ↔ Order.IsIdeal (↑F)ᶜ
def
Order.PFilter.IsPrime.toPrimePair
{P : Type u_1}
[Preorder P]
{F : Order.PFilter P}
(h : Order.PFilter.IsPrime F)
:
Create an element of type Order.Ideal.PrimePair
from a filter satisfying the predicate
Order.PFilter.IsPrime
.
Equations
- Order.PFilter.IsPrime.toPrimePair h = { I := Order.IsIdeal.toIdeal (_ : Order.IsIdeal (↑F)ᶜ), F := F, isCompl_I_F := (_ : IsCompl (↑F)ᶜ ↑F) }
Instances For
theorem
Order.Ideal.PrimePair.F_isPrime
{P : Type u_1}
[Preorder P]
(IF : Order.Ideal.PrimePair P)
: