Documentation
Mathlib
.
Order
.
RelIso
.
Group
Search
Google site search
return to top
source
Imports
Init
Mathlib.Algebra.Group.Defs
Mathlib.Order.RelIso.Basic
Imported by
RelIso
.
instGroupRelIso
RelIso
.
coe_one
RelIso
.
coe_mul
RelIso
.
mul_apply
RelIso
.
inv_apply_self
RelIso
.
apply_inv_self
Relation isomorphisms form a group
#
source
instance
RelIso
.
instGroupRelIso
{α :
Type
u_1}
{r :
α
→
α
→
Prop
}
:
Group
(
r
≃r
r
)
Equations
RelIso.instGroupRelIso
=
Group.mk
(_ :
∀ (
f
:
r
≃r
r
),
f
⁻¹
*
f
=
1
)
source
@[simp]
theorem
RelIso
.
coe_one
{α :
Type
u_1}
{r :
α
→
α
→
Prop
}
:
⇑
1
=
id
source
@[simp]
theorem
RelIso
.
coe_mul
{α :
Type
u_1}
{r :
α
→
α
→
Prop
}
(e₁ :
r
≃r
r
)
(e₂ :
r
≃r
r
)
:
⇑
(
e₁
*
e₂
)
=
⇑
e₁
∘
⇑
e₂
source
theorem
RelIso
.
mul_apply
{α :
Type
u_1}
{r :
α
→
α
→
Prop
}
(e₁ :
r
≃r
r
)
(e₂ :
r
≃r
r
)
(x :
α
)
:
(
e₁
*
e₂
)
x
=
e₁
(
e₂
x
)
source
@[simp]
theorem
RelIso
.
inv_apply_self
{α :
Type
u_1}
{r :
α
→
α
→
Prop
}
(e :
r
≃r
r
)
(x :
α
)
:
e
⁻¹
(
e
x
)
=
x
source
@[simp]
theorem
RelIso
.
apply_inv_self
{α :
Type
u_1}
{r :
α
→
α
→
Prop
}
(e :
r
≃r
r
)
(x :
α
)
:
e
(
e
⁻¹
x
)
=
x