UpperSet.Ici etc as Sup/sSup/Inf/sInf-homomorphisms #
In this file we define UpperSet.iciSupHom etc. These functions are UpperSet.Ici and
LowerSet.Iic bundled as SupHoms, InfHoms, sSupHoms, or sInfHoms.
UpperSet.Ici as a SupHom.
Equations
- UpperSet.iciSupHom = { toFun := UpperSet.Ici, map_sup' := (_ : ∀ (a b : α), UpperSet.Ici (a ⊔ b) = UpperSet.Ici a ⊔ UpperSet.Ici b) }
Instances For
@[simp]
theorem
UpperSet.coe_iciSupHom
{α : Type u_1}
[SemilatticeSup α]
:
⇑UpperSet.iciSupHom = UpperSet.Ici
@[simp]
theorem
UpperSet.iciSupHom_apply
{α : Type u_1}
[SemilatticeSup α]
(a : α)
:
UpperSet.iciSupHom a = UpperSet.Ici a
@[simp]
theorem
UpperSet.coe_icisSupHom
{α : Type u_1}
[CompleteLattice α]
:
⇑UpperSet.icisSupHom = UpperSet.Ici
@[simp]
theorem
UpperSet.icisSupHom_apply
{α : Type u_1}
[CompleteLattice α]
(a : α)
:
UpperSet.icisSupHom a = UpperSet.Ici a
LowerSet.Iic as an InfHom.
Equations
- LowerSet.iicInfHom = { toFun := LowerSet.Iic, map_inf' := (_ : ∀ (a b : α), LowerSet.Iic (a ⊓ b) = LowerSet.Iic a ⊓ LowerSet.Iic b) }
Instances For
@[simp]
theorem
LowerSet.coe_iicInfHom
{α : Type u_1}
[SemilatticeInf α]
:
⇑LowerSet.iicInfHom = LowerSet.Iic
@[simp]
theorem
LowerSet.iicInfHom_apply
{α : Type u_1}
[SemilatticeInf α]
(a : α)
:
LowerSet.iicInfHom a = LowerSet.Iic a
@[simp]
theorem
LowerSet.coe_iicsInfHom
{α : Type u_1}
[CompleteLattice α]
:
⇑LowerSet.iicsInfHom = LowerSet.Iic
@[simp]
theorem
LowerSet.iicsInfHom_apply
{α : Type u_1}
[CompleteLattice α]
(a : α)
:
LowerSet.iicsInfHom a = LowerSet.Iic a