Zorn lemma for (co)atoms #
In this file we use Zorn's lemma to prove that a partial order is atomic if every nonempty chain
c
, ⊥ ∉ c
, has a lower bound not equal to ⊥
. We also prove the order dual version of this
statement.
theorem
IsCoatomic.of_isChain_bounded
{α : Type u_1}
[PartialOrder α]
[OrderTop α]
(h : ∀ (c : Set α),
IsChain (fun (x x_1 : α) => x ≤ x_1) c → Set.Nonempty c → ⊤ ∉ c → ∃ (x : α) (_ : x ≠ ⊤), x ∈ upperBounds c)
:
Zorn's lemma: A partial order is coatomic if every nonempty chain c
, ⊤ ∉ c
, has an upper
bound not equal to ⊤
.
theorem
IsAtomic.of_isChain_bounded
{α : Type u_1}
[PartialOrder α]
[OrderBot α]
(h : ∀ (c : Set α),
IsChain (fun (x x_1 : α) => x ≤ x_1) c → Set.Nonempty c → ⊥ ∉ c → ∃ (x : α) (_ : x ≠ ⊥), x ∈ lowerBounds c)
:
IsAtomic α
Zorn's lemma: A partial order is atomic if every nonempty chain c
, ⊥ ∉ c
, has a lower
bound not equal to ⊥
.