Poisson distributions over ℕ #
Define the Poisson measure over the natural numbers
Main definitions #
poissonPMFReal
: the functionλ n ↦ exp (- λ) * λ ^ n / n!
forn ∈ ℕ
, which is the probability density function of a Poisson distribution with rateλ > 0
.poissonPMF
:ℝ≥0∞
-valued pdf,poissonPMF λ = ENNReal.ofReal (poissonPMFReal λ)
.poissonMeasure
: a Poisson measure onℕ
, parametrized by its rateλ
.
The pmf of the Poisson distribution depending on its rate, as a function to ℝ
Equations
- ProbabilityTheory.poissonPMFReal r n = Real.exp (-↑r) * ↑r ^ n / ↑(Nat.factorial n)
Instances For
theorem
ProbabilityTheory.poissonPMFRealSum
(r : NNReal)
:
HasSum (fun (n : ℕ) => ProbabilityTheory.poissonPMFReal r n) 1
The Poisson pmf is positive for all natural numbers
The pmf of the Poisson distribution depending on its rate, as a PMF.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The Poisson pmf is measurable.
Measure defined by the Poisson distribution