Documentation

Mathlib.Probability.Kernel.MeasureCompProd

Composition-Product of a measure and a kernel #

This operation, denoted by ⊗ₘ, takes μ : Measure α and κ : kernel α β and creates μ ⊗ₘ κ : Measure (α × β). The integral of a function against μ ⊗ₘ κ is ∫⁻ x, f x ∂(μ ⊗ₘ κ) = ∫⁻ a, ∫⁻ b, f (a, b) ∂(κ a) ∂μ.

μ ⊗ₘ κ is defined as ((kernel.const Unit μ) ⊗ₖ (kernel.prodMkLeft Unit κ)) ().

Main definitions #

Notations #

noncomputable def MeasureTheory.Measure.compProd {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (μ : MeasureTheory.Measure α) (κ : (ProbabilityTheory.kernel α β)) :

The composition-product of a measure and a kernel.

Equations
Instances For

    The composition-product of a measure and a kernel.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem MeasureTheory.Measure.compProd_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : (ProbabilityTheory.kernel α β)} [MeasureTheory.SFinite μ] [ProbabilityTheory.IsSFiniteKernel κ] {s : Set (α × β)} (hs : MeasurableSet s) :
      (MeasureTheory.Measure.compProd μ κ) s = ∫⁻ (a : α), (κ a) (Prod.mk a ⁻¹' s)μ
      theorem MeasureTheory.Measure.lintegral_compProd {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : (ProbabilityTheory.kernel α β)} [MeasureTheory.SFinite μ] [ProbabilityTheory.IsSFiniteKernel κ] {f : α × βENNReal} (hf : Measurable f) :
      ∫⁻ (x : α × β), f xMeasureTheory.Measure.compProd μ κ = ∫⁻ (a : α), ∫⁻ (b : β), f (a, b)κ aμ
      theorem MeasureTheory.Measure.set_lintegral_compProd {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : (ProbabilityTheory.kernel α β)} [MeasureTheory.SFinite μ] [ProbabilityTheory.IsSFiniteKernel κ] {f : α × βENNReal} (hf : Measurable f) {s : Set α} (hs : MeasurableSet s) {t : Set β} (ht : MeasurableSet t) :
      ∫⁻ (x : α × β) in s ×ˢ t, f xMeasureTheory.Measure.compProd μ κ = ∫⁻ (a : α) in s, ∫⁻ (b : β) in t, f (a, b)κ aμ
      theorem MeasureTheory.Measure.integrable_compProd_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : (ProbabilityTheory.kernel α β)} [MeasureTheory.SFinite μ] [ProbabilityTheory.IsSFiniteKernel κ] {E : Type u_3} [NormedAddCommGroup E] {f : α × βE} (hf : MeasureTheory.AEStronglyMeasurable f (MeasureTheory.Measure.compProd μ κ)) :
      MeasureTheory.Integrable f (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable fun (y : β) => f (x, y)) MeasureTheory.Integrable fun (x : α) => ∫ (y : β), f (x, y)κ x
      theorem MeasureTheory.Measure.integral_compProd {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : (ProbabilityTheory.kernel α β)} [MeasureTheory.SFinite μ] [ProbabilityTheory.IsSFiniteKernel κ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : α × βE} (hf : MeasureTheory.Integrable f) :
      ∫ (x : α × β), f xMeasureTheory.Measure.compProd μ κ = ∫ (a : α), ∫ (b : β), f (a, b)κ aμ
      theorem MeasureTheory.Measure.set_integral_compProd {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : (ProbabilityTheory.kernel α β)} [MeasureTheory.SFinite μ] [ProbabilityTheory.IsSFiniteKernel κ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {s : Set α} (hs : MeasurableSet s) {t : Set β} (ht : MeasurableSet t) {f : α × βE} (hf : MeasureTheory.IntegrableOn f (s ×ˢ t)) :
      ∫ (x : α × β) in s ×ˢ t, f xMeasureTheory.Measure.compProd μ κ = ∫ (a : α) in s, ∫ (b : β) in t, f (a, b)κ aμ