Flat algebras and flat ring homomorphisms #
We define flat algebras and flat ring homomorphisms.
Main definitions #
Algebra.Flat
: anR
-algebraS
is flat if it is flat asR
-moduleRingHom.Flat
: a ring homomorphismf : R → S
is flat, if it makesS
into a flatR
-algebra
Equations
- (_ : Algebra.Flat R R) = (_ : Algebra.Flat R R)
theorem
Algebra.Flat.comp
(R : Type u)
(S : Type v)
(T : Type w)
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
[Algebra.Flat R S]
[Algebra.Flat S T]
:
Algebra.Flat R T
If T
is a flat S
-algebra and S
is a flat R
-algebra,
then T
is a flat R
-algebra.
The identity of a ring is flat.
Equations
- (_ : RingHom.Flat 1) = (_ : RingHom.Flat 1)
instance
RingHom.Flat.comp
{R : Type u}
{S : Type v}
{T : Type w}
[CommRing R]
[CommRing S]
[CommRing T]
(f : R →+* S)
(g : S →+* T)
[RingHom.Flat f]
[RingHom.Flat g]
:
RingHom.Flat (RingHom.comp g f)
Composition of flat ring homomorphisms is flat.
Equations
- (_ : RingHom.Flat (RingHom.comp g f)) = (_ : RingHom.Flat (RingHom.comp g f))