Documentation

Mathlib.RingTheory.Flat.Algebra

Flat algebras and flat ring homomorphisms #

We define flat algebras and flat ring homomorphisms.

Main definitions #

class Algebra.Flat (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] :

An R-algebra S is flat if it is flat as R-module.

Instances
    instance Algebra.Flat.self (R : Type u) [CommRing R] :
    Equations
    theorem Algebra.Flat.comp (R : Type u) (S : Type v) (T : Type w) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [Algebra.Flat R S] [Algebra.Flat S T] :

    If T is a flat S-algebra and S is a flat R-algebra, then T is a flat R-algebra.

    class RingHom.Flat {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) :

    A RingHom is flat if R is flat as an S algebra.

    Instances

      The identity of a ring is flat.

      Equations
      instance RingHom.Flat.comp {R : Type u} {S : Type v} {T : Type w} [CommRing R] [CommRing S] [CommRing T] (f : R →+* S) (g : S →+* T) [RingHom.Flat f] [RingHom.Flat g] :

      Composition of flat ring homomorphisms is flat.

      Equations