Hermite polynomials #
This file defines Polynomial.hermite n
, the n
th probabilists' Hermite polynomial.
Main definitions #
Polynomial.hermite n
: then
th probabilists' Hermite polynomial, defined recursively as aPolynomial ℤ
Results #
Polynomial.hermite_succ
: the recursionhermite (n+1) = (x - d/dx) (hermite n)
Polynomial.coeff_hermite_explicit
: a closed formula for (nonvanishing) coefficients in terms of binomial coefficients and double factorials.Polynomial.coeff_hermite_of_odd_add
: forn
,k
wheren+k
is odd,(hermite n).coeff k
is zero.Polynomial.coeff_hermite_of_even_add
: a closed formula for(hermite n).coeff k
whenn+k
is even, equivalent toPolynomial.coeff_hermite_explicit
.Polynomial.monic_hermite
: for alln
,hermite n
is monic.Polynomial.degree_hermite
: for alln
,hermite n
has degreen
.
References #
the probabilists' Hermite polynomials.
Equations
- Polynomial.hermite 0 = 1
- Polynomial.hermite (Nat.succ n) = Polynomial.X * Polynomial.hermite n - Polynomial.derivative (Polynomial.hermite n)
Instances For
@[simp]
theorem
Polynomial.hermite_succ
(n : ℕ)
:
Polynomial.hermite (n + 1) = Polynomial.X * Polynomial.hermite n - Polynomial.derivative (Polynomial.hermite n)
The recursion hermite (n+1) = (x - d/dx) (hermite n)
Lemmas about Polynomial.coeff
#
theorem
Polynomial.coeff_hermite_succ_zero
(n : ℕ)
:
Polynomial.coeff (Polynomial.hermite (n + 1)) 0 = -Polynomial.coeff (Polynomial.hermite n) 1
theorem
Polynomial.coeff_hermite_succ_succ
(n : ℕ)
(k : ℕ)
:
Polynomial.coeff (Polynomial.hermite (n + 1)) (k + 1) = Polynomial.coeff (Polynomial.hermite n) k - (↑k + 2) * Polynomial.coeff (Polynomial.hermite n) (k + 2)
theorem
Polynomial.coeff_hermite_of_lt
{n : ℕ}
{k : ℕ}
(hnk : n < k)
:
Polynomial.coeff (Polynomial.hermite n) k = 0
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Polynomial.coeff_hermite_of_odd_add
{n : ℕ}
{k : ℕ}
(hnk : Odd (n + k))
:
Polynomial.coeff (Polynomial.hermite n) k = 0
theorem
Polynomial.coeff_hermite_explicit
(n : ℕ)
(k : ℕ)
:
Polynomial.coeff (Polynomial.hermite (2 * n + k)) k = (-1) ^ n * ↑(Nat.doubleFactorial (2 * n - 1)) * ↑(Nat.choose (2 * n + k) k)
Because of coeff_hermite_of_odd_add
, every nonzero coefficient is described as follows.
theorem
Polynomial.coeff_hermite_of_even_add
{n : ℕ}
{k : ℕ}
(hnk : Even (n + k))
:
Polynomial.coeff (Polynomial.hermite n) k = (-1) ^ ((n - k) / 2) * ↑(Nat.doubleFactorial (n - k - 1)) * ↑(Nat.choose n k)
theorem
Polynomial.coeff_hermite
(n : ℕ)
(k : ℕ)
:
Polynomial.coeff (Polynomial.hermite n) k = if Even (n + k) then (-1) ^ ((n - k) / 2) * ↑(Nat.doubleFactorial (n - k - 1)) * ↑(Nat.choose n k) else 0