Polynomials over an irreducible ring #
This file contains results about the polynomials over an irreducible ring (i.e. a ring with only one minimal prime ideal, equivalently, whose spectrum is an irreducible topological space).
Main results #
Polynomial.Monic.irreducible_of_irreducible_map_of_isPrime_nilradical
: a monic polynomial over an irreducible ring is irreducible if it is irreducible after mapping into an integral domain. A generalization toPolynomial.Monic.irreducible_of_irreducible_map
.
Tags #
polynomial, irreducible ring, nilradical, prime ideal
theorem
Polynomial.Monic.irreducible_of_irreducible_map_of_isPrime_nilradical
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[Ideal.IsPrime (nilradical R)]
[CommRing S]
[IsDomain S]
(φ : R →+* S)
(f : Polynomial R)
(hm : Polynomial.Monic f)
(hi : Irreducible (Polynomial.map φ f))
:
A polynomial over an irreducible ring R
is irreducible if it is monic and irreducible after
mapping into an integral domain S
(https://math.stackexchange.com/a/4843432/235999).
A generalization to Polynomial.Monic.irreducible_of_irreducible_map
.