Documentation

Mathlib.RingTheory.Valuation.Quotient

The valuation on a quotient ring #

The support of a valuation v : Valuation R Γ₀ is supp v. If J is an ideal of R with h : J ⊆ supp v then the induced valuation on R / J = Ideal.Quotient J is onQuot v h.

def Valuation.onQuotVal {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {J : Ideal R} (hJ : J Valuation.supp v) :
R JΓ₀

If hJ : J ⊆ supp v then onQuotVal hJ is the induced function on R / J as a function. Note: it's just the function; the valuation is onQuot hJ.

Equations
Instances For
    def Valuation.onQuot {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {J : Ideal R} (hJ : J Valuation.supp v) :
    Valuation (R J) Γ₀

    The extension of valuation v on R to valuation on R / J if J ⊆ supp v.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem Valuation.onQuot_comap_eq {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {J : Ideal R} (hJ : J Valuation.supp v) :

      The quotient valuation on R / J has support (supp v) / J if J ⊆ supp v.

      def AddValuation.onQuotVal {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {J : Ideal R} (hJ : J AddValuation.supp v) :
      R JΓ₀

      If hJ : J ⊆ supp v then onQuotVal hJ is the induced function on R / J as a function. Note: it's just the function; the valuation is onQuot hJ.

      Equations
      Instances For
        def AddValuation.onQuot {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {J : Ideal R} (hJ : J AddValuation.supp v) :
        AddValuation (R J) Γ₀

        The extension of valuation v on R to valuation on R / J if J ⊆ supp v.

        Equations
        Instances For

          The quotient valuation on R / J has support (supp v) / J if J ⊆ supp v.