The valuation on a quotient ring #
The support of a valuation v : Valuation R Γ₀
is supp v
. If J
is an ideal of R
with h : J ⊆ supp v
then the induced valuation
on R / J
= Ideal.Quotient J
is onQuot v h
.
def
Valuation.onQuotVal
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(v : Valuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ Valuation.supp v)
:
R ⧸ J → Γ₀
If hJ : J ⊆ supp v
then onQuotVal hJ
is the induced function on R / J
as a function.
Note: it's just the function; the valuation is onQuot hJ
.
Equations
- Valuation.onQuotVal v hJ q = Quotient.liftOn' q ⇑v (_ : ∀ (a b : R), Setoid.r a b → v a = v b)
Instances For
def
Valuation.onQuot
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(v : Valuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ Valuation.supp v)
:
The extension of valuation v
on R
to valuation on R / J
if J ⊆ supp v
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Valuation.onQuot_comap_eq
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(v : Valuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ Valuation.supp v)
:
Valuation.comap (Ideal.Quotient.mk J) (Valuation.onQuot v hJ) = v
theorem
Valuation.self_le_supp_comap
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(J : Ideal R)
(v : Valuation (R ⧸ J) Γ₀)
:
J ≤ Valuation.supp (Valuation.comap (Ideal.Quotient.mk J) v)
@[simp]
theorem
Valuation.comap_onQuot_eq
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(J : Ideal R)
(v : Valuation (R ⧸ J) Γ₀)
:
Valuation.onQuot (Valuation.comap (Ideal.Quotient.mk J) v)
(_ : J ≤ Valuation.supp (Valuation.comap (Ideal.Quotient.mk J) v)) = v
theorem
Valuation.supp_quot
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(v : Valuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ Valuation.supp v)
:
Valuation.supp (Valuation.onQuot v hJ) = Ideal.map (Ideal.Quotient.mk J) (Valuation.supp v)
The quotient valuation on R / J
has support (supp v) / J
if J ⊆ supp v
.
theorem
Valuation.supp_quot_supp
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedCommMonoidWithZero Γ₀]
(v : Valuation R Γ₀)
:
Valuation.supp (Valuation.onQuot v (_ : Valuation.supp v ≤ Valuation.supp v)) = 0
def
AddValuation.onQuotVal
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ AddValuation.supp v)
:
R ⧸ J → Γ₀
If hJ : J ⊆ supp v
then onQuotVal hJ
is the induced function on R / J
as a function.
Note: it's just the function; the valuation is onQuot hJ
.
Equations
- AddValuation.onQuotVal v hJ = Valuation.onQuotVal v hJ
Instances For
def
AddValuation.onQuot
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ AddValuation.supp v)
:
AddValuation (R ⧸ J) Γ₀
The extension of valuation v
on R
to valuation on R / J
if J ⊆ supp v
.
Equations
- AddValuation.onQuot v hJ = Valuation.onQuot v hJ
Instances For
@[simp]
theorem
AddValuation.onQuot_comap_eq
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ AddValuation.supp v)
:
AddValuation.comap (Ideal.Quotient.mk J) (AddValuation.onQuot v hJ) = v
theorem
AddValuation.comap_supp
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
{S : Type u_3}
[CommRing S]
(f : S →+* R)
:
AddValuation.supp (AddValuation.comap f v) = Ideal.comap f (AddValuation.supp v)
theorem
AddValuation.self_le_supp_comap
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(J : Ideal R)
(v : AddValuation (R ⧸ J) Γ₀)
:
@[simp]
theorem
AddValuation.comap_onQuot_eq
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(J : Ideal R)
(v : AddValuation (R ⧸ J) Γ₀)
:
AddValuation.onQuot (AddValuation.comap (Ideal.Quotient.mk J) v)
(_ : J ≤ AddValuation.supp (AddValuation.comap (Ideal.Quotient.mk J) v)) = v
theorem
AddValuation.supp_quot
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
{J : Ideal R}
(hJ : J ≤ AddValuation.supp v)
:
AddValuation.supp (AddValuation.onQuot v hJ) = Ideal.map (Ideal.Quotient.mk J) (AddValuation.supp v)
The quotient valuation on R / J
has support (supp v) / J
if J ⊆ supp v
.
theorem
AddValuation.supp_quot_supp
{R : Type u_1}
{Γ₀ : Type u_2}
[CommRing R]
[LinearOrderedAddCommMonoidWithTop Γ₀]
(v : AddValuation R Γ₀)
:
AddValuation.supp (Valuation.onQuot v (_ : Valuation.supp v ≤ Valuation.supp v)) = 0