Valuation Rings #
A valuation ring is a domain such that for every pair of elements a b
, either a
divides
b
or vice-versa.
Any valuation ring induces a natural valuation on its fraction field, as we show in this file.
Namely, given the following instances:
[CommRing A] [IsDomain A] [ValuationRing A] [Field K] [Algebra A K] [IsFractionRing A K]
,
there is a natural valuation Valuation A K
on K
with values in value_group A K
where
the image of A
under algebraMap A K
agrees with (Valuation A K).integer
.
We also provide the equivalence of the following notions for a domain R
in ValuationRing.tFAE
.
R
is a valuation ring.- For each
x : FractionRing K
, eitherx
orx⁻¹
is inR
. - "divides" is a total relation on the elements of
R
. - "contains" is a total relation on the ideals of
R
. R
is a local bezout domain.
The value group of the valuation ring A
. Note: this is actually a group with zero.
Equations
- ValuationRing.ValueGroup A K = Quotient (MulAction.orbitRel Aˣ K)
Instances For
Equations
- ValuationRing.instInhabitedValueGroup A K = { default := Quotient.mk'' 0 }
Equations
- One or more equations did not get rendered due to their size.
Equations
- ValuationRing.instZeroValueGroup A K = { zero := Quotient.mk'' 0 }
Equations
- ValuationRing.instOneValueGroup A K = { one := Quotient.mk'' 1 }
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- ValuationRing.linearOrder A K = LinearOrder.mk (_ : ∀ (a b : ValuationRing.ValueGroup A K), a ≤ b ∨ b ≤ a) inferInstance decidableEqOfDecidableLE decidableLTOfDecidableLE
Equations
- One or more equations did not get rendered due to their size.
Any valuation ring induces a valuation on its fraction field.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The valuation ring A
is isomorphic to the ring of integers of its associated valuation.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Equations
- (_ : ValuationRing R) = (_ : ValuationRing R)
If 𝒪
satisfies v.integers 𝒪
where v
is a valuation on a field, then 𝒪
is a valuation ring.
A field is a valuation ring.
Equations
- (_ : ValuationRing K) = (_ : ValuationRing K)
A DVR is a valuation ring.
Equations
- (_ : ValuationRing A) = (_ : ValuationRing A)