The Verschiebung operator #
References #
-
[Hazewinkel, Witt Vectors][Haze09]
-
[Commelin and Lewis, Formalizing the Ring of Witt Vectors][CL21]
verschiebungFun x
shifts the coefficients of x
up by one,
by inserting 0 as the 0th coefficient.
x.coeff i
then becomes (verchiebungFun x).coeff (i + 1)
.
verschiebungFun
is the underlying function of the additive monoid hom WittVector.verschiebung
.
Equations
- WittVector.verschiebungFun x = { coeff := fun (n : ℕ) => if n = 0 then 0 else x.coeff (n - 1) }
Instances For
The 0th Verschiebung polynomial is 0. For n > 0
, the n
th Verschiebung polynomial is the
variable X (n-1)
.
Equations
- WittVector.verschiebungPoly n = if n = 0 then 0 else MvPolynomial.X (n - 1)
Instances For
WittVector.verschiebung
has polynomial structure given by WittVector.verschiebungPoly
.
Equations
- (_ : WittVector.IsPoly p fun (R : Type u_3) (_Rcr : CommRing R) => WittVector.verschiebungFun) = (_ : WittVector.IsPoly p fun (R : Type u_3) (_Rcr : CommRing R) => WittVector.verschiebungFun)
verschiebung x
shifts the coefficients of x
up by one, by inserting 0 as the 0th coefficient.
x.coeff i
then becomes (verchiebung x).coeff (i + 1)
.
This is an additive monoid hom with underlying function verschiebung_fun
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
WittVector.verschiebung
is a polynomial function.
verschiebung is a natural transformation