Documentation

Mathlib.SetTheory.Ordinal.Principal

Principal ordinals #

We define principal or indecomposable ordinals, and we prove the standard properties about them.

Main definitions and results #

Todo #

Principal ordinals #

An ordinal o is said to be principal or indecomposable under an operation when the set of ordinals less than it is closed under that operation. In standard mathematical usage, this term is almost exclusively used for additive and multiplicative principal ordinals.

For simplicity, we break usual convention and regard 0 as principal.

Equations
Instances For
    theorem Ordinal.op_eq_self_of_principal {op : Ordinal.{u}Ordinal.{u}Ordinal.{u}} {a : Ordinal.{u}} {o : Ordinal.{u}} (hao : a < o) (H : Ordinal.IsNormal (op a)) (ho : Ordinal.Principal op o) (ho' : Ordinal.IsLimit o) :
    op a o = o

    Principal ordinals are unbounded #

    theorem Ordinal.principal_nfp_blsub₂ (op : Ordinal.{u}Ordinal.{u}Ordinal.{u}) (o : Ordinal.{u}) :
    Ordinal.Principal op (Ordinal.nfp (fun (o' : Ordinal.{u}) => Ordinal.blsub₂ o' o' fun (a : Ordinal.{u}) (x : a < o') (b : Ordinal.{u}) (x : b < o') => op a b) o)

    Additive principal ordinals #

    theorem Ordinal.principal_add_of_le_one {o : Ordinal.{u_1}} (ho : o 1) :
    Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x + x_1) o
    theorem Ordinal.principal_add_isLimit {o : Ordinal.{u_1}} (ho₁ : 1 < o) (ho : Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x + x_1) o) :
    theorem Ordinal.principal_add_iff_add_left_eq_self {o : Ordinal.{u_1}} :
    Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x + x_1) o a < o, a + o = o
    theorem Ordinal.exists_lt_add_of_not_principal_add {a : Ordinal.{u_1}} (ha : ¬Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x + x_1) a) :
    ∃ (b : Ordinal.{u_1}) (c : Ordinal.{u_1}) (_ : b < a) (_ : c < a), b + c = a
    theorem Ordinal.principal_add_iff_add_lt_ne_self {a : Ordinal.{u_1}} :
    Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x + x_1) a ∀ ⦃b c : Ordinal.{u_1}⦄, b < ac < ab + c a

    The main characterization theorem for additive principal ordinals.

    theorem Ordinal.opow_principal_add_of_principal_add {a : Ordinal.{u_1}} (ha : Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x + x_1) a) (b : Ordinal.{u_1}) :
    Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x + x_1) (a ^ b)
    theorem Ordinal.add_absorp {a : Ordinal.{u_1}} {b : Ordinal.{u_1}} {c : Ordinal.{u_1}} (h₁ : a < Ordinal.omega ^ b) (h₂ : Ordinal.omega ^ b c) :
    a + c = c
    theorem Ordinal.mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b 1) (hb : Ordinal.Principal (fun (x x_1 : Ordinal.{u}) => x + x_1) b) :
    Ordinal.Principal (fun (x x_1 : Ordinal.{u}) => x + x_1) (a * b)

    Multiplicative principal ordinals #

    theorem Ordinal.principal_mul_of_le_two {o : Ordinal.{u_1}} (ho : o 2) :
    Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x * x_1) o
    theorem Ordinal.principal_add_of_principal_mul {o : Ordinal.{u_1}} (ho : Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x * x_1) o) (ho₂ : o 2) :
    Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x + x_1) o
    theorem Ordinal.principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Ordinal.Principal (fun (x x_1 : Ordinal.{u}) => x * x_1) o) :
    theorem Ordinal.principal_mul_iff_mul_left_eq {o : Ordinal.{u_1}} :
    Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x * x_1) o ∀ (a : Ordinal.{u_1}), 0 < aa < oa * o = o
    theorem Ordinal.principal_add_of_principal_mul_opow {o : Ordinal.{u_1}} {b : Ordinal.{u_1}} (hb : 1 < b) (ho : Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x * x_1) (b ^ o)) :
    Ordinal.Principal (fun (x x_1 : Ordinal.{u_1}) => x + x_1) o

    The main characterization theorem for multiplicative principal ordinals.

    theorem Ordinal.mul_omega_dvd {a : Ordinal.{u_1}} (a0 : 0 < a) (ha : a < Ordinal.omega) {b : Ordinal.{u_1}} :
    Ordinal.omega ba * b = b
    theorem Ordinal.mul_eq_opow_log_succ {a : Ordinal.{u}} {b : Ordinal.{u}} (ha : a 0) (hb : Ordinal.Principal (fun (x x_1 : Ordinal.{u}) => x * x_1) b) (hb₂ : 2 < b) :
    a * b = b ^ Order.succ (Ordinal.log b a)

    Exponential principal ordinals #