Von Neumann ordinals #
This file works towards the development of von Neumann ordinals, i.e. transitive sets, well-ordered
under ∈
. We currently only have an initial development of transitive sets.
Further development can be found on the branch von_neumann_v2
.
Definitions #
ZFSet.IsTransitive
means that every element of a set is a subset.
Todo #
- Define von Neumann ordinals.
- Define the basic arithmetic operations on ordinals from a purely set-theoretic perspective.
- Prove the equivalences between these definitions and those provided in
SetTheory/Ordinal/Arithmetic.lean
.
A transitive set is one where every element is a subset.
Equations
- ZFSet.IsTransitive x = ∀ y ∈ x, y ⊆ x
Instances For
theorem
ZFSet.IsTransitive.mem_trans
{z : ZFSet}
:
ZFSet.IsTransitive z → ∀ {x y : ZFSet}, x ∈ y → y ∈ z → x ∈ z
Alias of the forward direction of ZFSet.isTransitive_iff_mem_trans
.
theorem
ZFSet.IsTransitive.inter
{x : ZFSet}
{y : ZFSet}
(hx : ZFSet.IsTransitive x)
(hy : ZFSet.IsTransitive y)
:
ZFSet.IsTransitive (x ∩ y)
theorem
ZFSet.IsTransitive.sUnion'
{x : ZFSet}
(H : ∀ y ∈ x, ZFSet.IsTransitive y)
:
ZFSet.IsTransitive (⋃₀ x)
theorem
ZFSet.IsTransitive.union
{x : ZFSet}
{y : ZFSet}
(hx : ZFSet.IsTransitive x)
(hy : ZFSet.IsTransitive y)
:
ZFSet.IsTransitive (x ∪ y)
Alias of the forward direction of ZFSet.isTransitive_iff_sUnion_subset
.
theorem
ZFSet.isTransitive_iff_subset_powerset
{x : ZFSet}
:
ZFSet.IsTransitive x ↔ x ⊆ ZFSet.powerset x
Alias of the forward direction of ZFSet.isTransitive_iff_subset_powerset
.