Documentation

Mathlib.Tactic.FunProp.Continuous

funProp minimal setup for Continuous(At/On) #

theorem continuousAt_id' {α : Type u_1} [TopologicalSpace α] (y : α) :
ContinuousAt (fun (x : α) => x) y
theorem continuousOn_id' {α : Type u_1} [TopologicalSpace α] (s : Set α) :
ContinuousOn (fun (x : α) => x) s
theorem ContinuousAt.comp' {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace α] {g : βγ} {f : αβ} {x : α} (hg : ContinuousAt g (f x)) (hf : ContinuousAt f x) :
ContinuousAt (fun (x : α) => g (f x)) x
theorem ContinuousOn.comp'' {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace α] {g : βγ} {f : αβ} {s : Set α} {t : Set β} (hg : ContinuousOn g t) (hf : ContinuousOn f s) (h : Set.MapsTo f s t) :
ContinuousOn (fun (x : α) => g (f x)) s
theorem continuousOn_apply {ι : Type u_4} {π : ιType u_5} [T : (i : ι) → TopologicalSpace (π i)] (i : ι) (s : Set ((i : ι) → π i)) :
ContinuousOn (fun (p : (i : ι) → π i) => p i) s
theorem continuousAt_pi' {α : Type u_1} {ι : Type u_4} {π : ιType u_5} [TopologicalSpace α] [T : (i : ι) → TopologicalSpace (π i)] {f : α(i : ι) → π i} {x : α} (hf : ∀ (i : ι), ContinuousAt (fun (y : α) => f y i) x) :
theorem continuousOn_pi' {α : Type u_1} {ι : Type u_4} {π : ιType u_5} [TopologicalSpace α] [T : (i : ι) → TopologicalSpace (π i)] {f : α(i : ι) → π i} {s : Set α} (hf : ∀ (i : ι), ContinuousOn (fun (y : α) => f y i) s) :
theorem Continuous.div₀ {α : Type u_1} {G₀ : Type u_3} [TopologicalSpace α] [GroupWithZero G₀] [TopologicalSpace G₀] [HasContinuousInv₀ G₀] [ContinuousMul G₀] {f : αG₀} {g : αG₀} (hf : Continuous f) (hg : Continuous g) (h₀ : ∀ (x : α), g x 0) :
Continuous fun (x : α) => f x / g x
theorem ContinuousAt.div₀ {α : Type u_1} {G₀ : Type u_3} [TopologicalSpace α] [GroupWithZero G₀] [TopologicalSpace G₀] [HasContinuousInv₀ G₀] [ContinuousMul G₀] {f : αG₀} {g : αG₀} {a : α} (hf : ContinuousAt f a) (hg : ContinuousAt g a) (h₀ : g a 0) :
ContinuousAt (fun (x : α) => f x / g x) a
theorem ContinuousOn.div₀ {α : Type u_1} {G₀ : Type u_3} [TopologicalSpace α] [GroupWithZero G₀] [TopologicalSpace G₀] [HasContinuousInv₀ G₀] [ContinuousMul G₀] {f : αG₀} {g : αG₀} {s : Set α} (hf : ContinuousOn f s) (hg : ContinuousOn g s) (h₀ : xs, g x 0) :
ContinuousOn (fun (x : α) => f x / g x) s