The star operation, bundled as a continuous star-linear equiv #
@[simp]
theorem
starL_symm_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
∀ (a : A), (ContinuousLinearEquiv.symm (starL R)) a = (AddEquiv.symm starAddEquiv) a
@[simp]
theorem
starL_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
def
starL
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
If A
is a topological module over a commutative R
with compatible actions,
then star
is a continuous semilinear equivalence.
Equations
Instances For
@[simp]
theorem
starL'_symm_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[TrivialStar R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
∀ (a : A),
(ContinuousLinearEquiv.symm (starL' R)) a = (LinearEquiv.symm (starL R).toLinearEquiv)
((LinearEquiv.symm
{
toLinearMap :=
{
toAddHom :=
{ toFun := id,
map_add' :=
(_ :
∀ (x y : A),
(AddEquiv.refl A).toEquiv.toFun (x + y) = (AddEquiv.refl A).toEquiv.toFun x + (AddEquiv.refl A).toEquiv.toFun y) },
map_smul' := (_ : ∀ (r : R) (a : A), r • a = (starRingEnd R) r • a) },
invFun := id,
left_inv := (_ : Function.LeftInverse (AddEquiv.refl A).toEquiv.invFun (AddEquiv.refl A).toEquiv.toFun),
right_inv := (_ : Function.RightInverse (AddEquiv.refl A).toEquiv.invFun (AddEquiv.refl A).toEquiv.toFun) })
a)
@[simp]
theorem
starL'_apply
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[TrivialStar R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
def
starL'
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[TrivialStar R]
[AddCommMonoid A]
[StarAddMonoid A]
[Module R A]
[StarModule R A]
[TopologicalSpace A]
[ContinuousStar A]
:
If A
is a topological module over a commutative R
with trivial star and compatible actions,
then star
is a continuous linear equivalence.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
continuous_selfAdjointPart
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousAdd A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
theorem
continuous_skewAdjointPart
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousSub A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
theorem
continuous_decomposeProdAdjoint
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[TopologicalAddGroup A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
theorem
continuous_decomposeProdAdjoint_symm
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[TopologicalAddGroup A]
:
@[simp]
theorem
selfAdjointPartL_apply_coe
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousAdd A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(x : A)
:
@[simp]
theorem
selfAdjointPartL_toFun_coe
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousAdd A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(x : A)
:
def
selfAdjointPartL
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousAdd A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
A →L[R] ↥(selfAdjoint A)
The self-adjoint part of an element of a star module, as a continuous linear map.
Equations
Instances For
@[simp]
theorem
skewAdjointPartL_apply_coe
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousSub A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(x : A)
:
@[simp]
theorem
skewAdjointPartL_toFun_coe
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousSub A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(x : A)
:
def
skewAdjointPartL
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[ContinuousSub A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
A →L[R] ↥(skewAdjoint A)
The skew-adjoint part of an element of a star module, as a continuous linear map.
Equations
Instances For
@[simp]
theorem
StarModule.decomposeProdAdjointL_symm_apply
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[TopologicalAddGroup A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(a : ↥(selfAdjoint A) × ↥(skewAdjoint A))
:
(ContinuousLinearEquiv.symm (StarModule.decomposeProdAdjointL R A)) a = (Submodule.subtype (selfAdjoint.submodule R A)) a.1 + (Submodule.subtype (skewAdjoint.submodule R A)) a.2
@[simp]
theorem
StarModule.decomposeProdAdjointL_apply
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[TopologicalAddGroup A]
[ContinuousStar A]
[ContinuousConstSMul R A]
(i : A)
:
(StarModule.decomposeProdAdjointL R A) i = ((selfAdjointPart R) i, (skewAdjointPart R) i)
def
StarModule.decomposeProdAdjointL
(R : Type u_1)
(A : Type u_2)
[Semiring R]
[StarMul R]
[TrivialStar R]
[AddCommGroup A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
[Invertible 2]
[TopologicalSpace A]
[TopologicalAddGroup A]
[ContinuousStar A]
[ContinuousConstSMul R A]
:
A ≃L[R] ↥(selfAdjoint A) × ↥(skewAdjoint A)
The decomposition of elements of a star module into their self- and skew-adjoint parts, as a continuous linear equivalence.