Documentation

Mathlib.Topology.Algebra.Order.Filter

Topology on filters of a space with order topology #

In this file we prove that 𝓝 (f x) tends to 𝓝 Filter.atTop provided that f tends to Filter.atTop, and similarly for Filter.atBot.

theorem Filter.tendsto_nhds_atTop {X : Type u_2} [TopologicalSpace X] [PartialOrder X] [OrderTopology X] [NoMaxOrder X] :
Filter.Tendsto nhds Filter.atTop (nhds Filter.atTop)
theorem Filter.tendsto_nhds_atBot {X : Type u_2} [TopologicalSpace X] [PartialOrder X] [OrderTopology X] [NoMinOrder X] :
Filter.Tendsto nhds Filter.atBot (nhds Filter.atBot)
theorem Filter.Tendsto.nhds_atTop {α : Type u_1} {X : Type u_2} [TopologicalSpace X] [PartialOrder X] [OrderTopology X] [NoMaxOrder X] {f : αX} {l : Filter α} (h : Filter.Tendsto f l Filter.atTop) :
Filter.Tendsto (nhds f) l (nhds Filter.atTop)
theorem Filter.Tendsto.nhds_atBot {α : Type u_1} {X : Type u_2} [TopologicalSpace X] [PartialOrder X] [OrderTopology X] [NoMinOrder X] {f : αX} {l : Filter α} (h : Filter.Tendsto f l Filter.atBot) :
Filter.Tendsto (nhds f) l (nhds Filter.atBot)