Documentation

Mathlib.Topology.Category.Profinite.AsLimit

Profinite sets as limits of finite sets. #

We show that any profinite set is isomorphic to the limit of its discrete (hence finite) quotients.

Definitions #

There are a handful of definitions in this file, given X : Profinite:

  1. X.fintypeDiagram is the functor DiscreteQuotient X ⥤ FintypeCat whose limit is isomorphic to X (the limit taking place in Profinite via FintypeCat.toProfinite, see 2).
  2. X.diagram is an abbreviation for X.fintypeDiagramFintypeCat.toProfinite.
  3. X.asLimitCone is the cone over X.diagram whose cone point is X.
  4. X.isoAsLimitConeLift is the isomorphism X ≅ (Profinite.limitCone X.diagram).X induced by lifting X.asLimitCone.
  5. X.asLimitConeIso is the isomorphism X.asLimitCone ≅ (Profinite.limitCone X.diagram) induced by X.isoAsLimitConeLift.
  6. X.asLimit is a term of type IsLimit X.asLimitCone.
  7. X.lim : CategoryTheory.Limits.LimitCone X.asLimitCone is a bundled combination of 3 and 6.

The functor DiscreteQuotient X ⥤ Fintype whose limit is isomorphic to X.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    A cone over X.diagram whose cone point is X.

    Equations
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.

      The isomorphism between X and the explicit limit of X.diagram, induced by lifting X.asLimitCone.

      Equations
      Instances For

        A bundled version of X.asLimitCone and X.asLimit.

        Equations
        Instances For