Documentation

Mathlib.Topology.Inseparable

Inseparable points in a topological space #

In this file we define

We also prove various basic properties of the relation Inseparable.

Notations #

Tags #

topological space, separation setoid

Specializes relation #

def Specializes {X : Type u_1} [TopologicalSpace X] (x : X) (y : X) :

x specializes to y (notation: x ⤳ y) if either of the following equivalent properties hold:

  • 𝓝 x ≤ 𝓝 y; this property is used as the definition;
  • pure x ≤ 𝓝 y; in other words, any neighbourhood of y contains x;
  • y ∈ closure {x};
  • closure {y} ⊆ closure {x};
  • for any closed set s we have x ∈ s → y ∈ s;
  • for any open set s we have y ∈ s → x ∈ s;
  • y is a cluster point of the filter pure x = 𝓟 {x}.

This relation defines a Preorder on X. If X is a T₀ space, then this preorder is a partial order. If X is a T₁ space, then this partial order is trivial : x ⤳ y ↔ x = y.

Equations
Instances For

    x specializes to y (notation: x ⤳ y) if either of the following equivalent properties hold:

    • 𝓝 x ≤ 𝓝 y; this property is used as the definition;
    • pure x ≤ 𝓝 y; in other words, any neighbourhood of y contains x;
    • y ∈ closure {x};
    • closure {y} ⊆ closure {x};
    • for any closed set s we have x ∈ s → y ∈ s;
    • for any open set s we have y ∈ s → x ∈ s;
    • y is a cluster point of the filter pure x = 𝓟 {x}.

    This relation defines a Preorder on X. If X is a T₀ space, then this preorder is a partial order. If X is a T₁ space, then this partial order is trivial : x ⤳ y ↔ x = y.

    Equations
    Instances For
      theorem specializes_TFAE {X : Type u_1} [TopologicalSpace X] (x : X) (y : X) :
      List.TFAE [x y, pure x nhds y, ∀ (s : Set X), IsOpen sy sx s, ∀ (s : Set X), IsClosed sx sy s, y closure {x}, closure {y} closure {x}, ClusterPt y (pure x)]

      A collection of equivalent definitions of x ⤳ y. The public API is given by iff lemmas below.

      theorem specializes_iff_nhds {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      x y nhds x nhds y
      theorem Specializes.not_disjoint {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} (h : x y) :
      theorem specializes_iff_pure {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      x y pure x nhds y
      theorem Specializes.nhds_le_nhds {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      x ynhds x nhds y

      Alias of the forward direction of specializes_iff_nhds.

      theorem Specializes.pure_le_nhds {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      x ypure x nhds y

      Alias of the forward direction of specializes_iff_pure.

      theorem ker_nhds_eq_specializes {X : Type u_1} [TopologicalSpace X] {x : X} :
      Filter.ker (nhds x) = {y : X | y x}
      theorem specializes_iff_forall_open {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      x y ∀ (s : Set X), IsOpen sy sx s
      theorem Specializes.mem_open {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {s : Set X} (h : x y) (hs : IsOpen s) (hy : y s) :
      x s
      theorem IsOpen.not_specializes {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {s : Set X} (hs : IsOpen s) (hx : xs) (hy : y s) :
      ¬x y
      theorem specializes_iff_forall_closed {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      x y ∀ (s : Set X), IsClosed sx sy s
      theorem Specializes.mem_closed {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {s : Set X} (h : x y) (hs : IsClosed s) (hx : x s) :
      y s
      theorem IsClosed.not_specializes {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {s : Set X} (hs : IsClosed s) (hx : x s) (hy : ys) :
      ¬x y
      theorem specializes_iff_mem_closure {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      x y y closure {x}
      theorem Specializes.mem_closure {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      x yy closure {x}

      Alias of the forward direction of specializes_iff_mem_closure.

      theorem specializes_iff_closure_subset {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      x y closure {y} closure {x}
      theorem Specializes.closure_subset {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      x yclosure {y} closure {x}

      Alias of the forward direction of specializes_iff_closure_subset.

      theorem specializes_iff_clusterPt {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      x y ClusterPt y (pure x)
      theorem Filter.HasBasis.specializes_iff {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {ι : Sort u_7} {p : ιProp} {s : ιSet X} (h : Filter.HasBasis (nhds y) p s) :
      x y ∀ (i : ι), p ix s i
      theorem specializes_rfl {X : Type u_1} [TopologicalSpace X] {x : X} :
      x x
      theorem specializes_refl {X : Type u_1} [TopologicalSpace X] (x : X) :
      x x
      theorem Specializes.trans {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {z : X} :
      x yy zx z
      theorem specializes_of_eq {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} (e : x = y) :
      x y
      theorem specializes_of_nhdsWithin {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {s : Set X} (h₁ : nhdsWithin x s nhdsWithin y s) (h₂ : x s) :
      x y
      theorem Specializes.map_of_continuousAt {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x : X} {y : X} {f : XY} (h : x y) (hy : ContinuousAt f y) :
      f x f y
      theorem Specializes.map {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x : X} {y : X} {f : XY} (h : x y) (hf : Continuous f) :
      f x f y
      theorem Inducing.specializes_iff {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x : X} {y : X} {f : XY} (hf : Inducing f) :
      f x f y x y
      theorem subtype_specializes_iff {X : Type u_1} [TopologicalSpace X] {p : XProp} (x : Subtype p) (y : Subtype p) :
      x y x y
      @[simp]
      theorem specializes_prod {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x₁ : X} {x₂ : X} {y₁ : Y} {y₂ : Y} :
      (x₁, y₁) (x₂, y₂) x₁ x₂ y₁ y₂
      theorem Specializes.prod {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x₁ : X} {x₂ : X} {y₁ : Y} {y₂ : Y} (hx : x₁ x₂) (hy : y₁ y₂) :
      (x₁, y₁) (x₂, y₂)
      @[simp]
      theorem specializes_pi {ι : Type u_5} {π : ιType u_6} [(i : ι) → TopologicalSpace (π i)] {f : (i : ι) → π i} {g : (i : ι) → π i} :
      f g ∀ (i : ι), f i g i
      theorem not_specializes_iff_exists_open {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      ¬x y ∃ (S : Set X), IsOpen S y S xS
      theorem not_specializes_iff_exists_closed {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
      ¬x y ∃ (S : Set X), IsClosed S x S yS
      theorem IsOpen.continuous_piecewise_of_specializes {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {s : Set X} {f : XY} {g : XY} [DecidablePred fun (x : X) => x s] (hs : IsOpen s) (hf : Continuous f) (hg : Continuous g) (hspec : ∀ (x : X), f x g x) :
      theorem IsClosed.continuous_piecewise_of_specializes {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {s : Set X} {f : XY} {g : XY} [DecidablePred fun (x : X) => x s] (hs : IsClosed s) (hf : Continuous f) (hg : Continuous g) (hspec : ∀ (x : X), g x f x) :

      Specialization forms a preorder on the topological space.

      Equations
      Instances For
        theorem Continuous.specialization_monotone {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} (hf : Continuous f) :

        A continuous function is monotone with respect to the specialization preorders on the domain and the codomain.

        Inseparable relation #

        def Inseparable {X : Type u_1} [TopologicalSpace X] (x : X) (y : X) :

        Two points x and y in a topological space are Inseparable if any of the following equivalent properties hold:

        Equations
        Instances For
          theorem inseparable_def {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
          theorem inseparable_iff_specializes_and {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
          Inseparable x y x y y x
          theorem Inseparable.specializes {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} (h : Inseparable x y) :
          x y
          theorem Inseparable.specializes' {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} (h : Inseparable x y) :
          y x
          theorem Specializes.antisymm {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} (h₁ : x y) (h₂ : y x) :
          theorem inseparable_iff_forall_open {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
          Inseparable x y ∀ (s : Set X), IsOpen s(x s y s)
          theorem not_inseparable_iff_exists_open {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
          ¬Inseparable x y ∃ (s : Set X), IsOpen s Xor' (x s) (y s)
          theorem inseparable_iff_forall_closed {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
          Inseparable x y ∀ (s : Set X), IsClosed s(x s y s)
          theorem inseparable_iff_mem_closure {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
          theorem inseparable_iff_closure_eq {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} :
          theorem inseparable_of_nhdsWithin_eq {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {s : Set X} (hx : x s) (hy : y s) (h : nhdsWithin x s = nhdsWithin y s) :
          theorem Inducing.inseparable_iff {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x : X} {y : X} {f : XY} (hf : Inducing f) :
          Inseparable (f x) (f y) Inseparable x y
          theorem subtype_inseparable_iff {X : Type u_1} [TopologicalSpace X] {p : XProp} (x : Subtype p) (y : Subtype p) :
          @[simp]
          theorem inseparable_prod {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x₁ : X} {x₂ : X} {y₁ : Y} {y₂ : Y} :
          Inseparable (x₁, y₁) (x₂, y₂) Inseparable x₁ x₂ Inseparable y₁ y₂
          theorem Inseparable.prod {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x₁ : X} {x₂ : X} {y₁ : Y} {y₂ : Y} (hx : Inseparable x₁ x₂) (hy : Inseparable y₁ y₂) :
          Inseparable (x₁, y₁) (x₂, y₂)
          @[simp]
          theorem inseparable_pi {ι : Type u_5} {π : ιType u_6} [(i : ι) → TopologicalSpace (π i)] {f : (i : ι) → π i} {g : (i : ι) → π i} :
          Inseparable f g ∀ (i : ι), Inseparable (f i) (g i)
          theorem Inseparable.refl {X : Type u_1} [TopologicalSpace X] (x : X) :
          theorem Inseparable.rfl {X : Type u_1} [TopologicalSpace X] {x : X} :
          theorem Inseparable.of_eq {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} (e : x = y) :
          theorem Inseparable.symm {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} (h : Inseparable x y) :
          theorem Inseparable.trans {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {z : X} (h₁ : Inseparable x y) (h₂ : Inseparable y z) :
          theorem Inseparable.nhds_eq {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} (h : Inseparable x y) :
          nhds x = nhds y
          theorem Inseparable.mem_open_iff {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {s : Set X} (h : Inseparable x y) (hs : IsOpen s) :
          x s y s
          theorem Inseparable.mem_closed_iff {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {s : Set X} (h : Inseparable x y) (hs : IsClosed s) :
          x s y s
          theorem Inseparable.map_of_continuousAt {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x : X} {y : X} {f : XY} (h : Inseparable x y) (hx : ContinuousAt f x) (hy : ContinuousAt f y) :
          Inseparable (f x) (f y)
          theorem Inseparable.map {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x : X} {y : X} {f : XY} (h : Inseparable x y) (hf : Continuous f) :
          Inseparable (f x) (f y)
          theorem IsClosed.not_inseparable {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {s : Set X} (hs : IsClosed s) (hx : x s) (hy : ys) :
          theorem IsOpen.not_inseparable {X : Type u_1} [TopologicalSpace X] {x : X} {y : X} {s : Set X} (hs : IsOpen s) (hx : x s) (hy : ys) :

          Separation quotient #

          In this section we define the quotient of a topological space by the Inseparable relation.

          A setoid version of Inseparable, used to define the SeparationQuotient.

          Equations
          Instances For

            The quotient of a topological space by its inseparableSetoid. This quotient is guaranteed to be a T₀ space.

            Equations
            Instances For

              The natural map from a topological space to its separation quotient.

              Equations
              • SeparationQuotient.mk = Quotient.mk''
              Instances For
                theorem SeparationQuotient.quotientMap_mk {X : Type u_1} [TopologicalSpace X] :
                QuotientMap SeparationQuotient.mk
                theorem SeparationQuotient.continuous_mk {X : Type u_1} [TopologicalSpace X] :
                Continuous SeparationQuotient.mk
                @[simp]
                theorem SeparationQuotient.range_mk {X : Type u_1} [TopologicalSpace X] :
                Set.range SeparationQuotient.mk = Set.univ
                Equations
                theorem SeparationQuotient.preimage_image_mk_open {X : Type u_1} [TopologicalSpace X] {s : Set X} (hs : IsOpen s) :
                SeparationQuotient.mk ⁻¹' (SeparationQuotient.mk '' s) = s
                theorem SeparationQuotient.isOpenMap_mk {X : Type u_1} [TopologicalSpace X] :
                IsOpenMap SeparationQuotient.mk
                theorem SeparationQuotient.preimage_image_mk_closed {X : Type u_1} [TopologicalSpace X] {s : Set X} (hs : IsClosed s) :
                SeparationQuotient.mk ⁻¹' (SeparationQuotient.mk '' s) = s
                theorem SeparationQuotient.inducing_mk {X : Type u_1} [TopologicalSpace X] :
                Inducing SeparationQuotient.mk
                theorem SeparationQuotient.isClosedMap_mk {X : Type u_1} [TopologicalSpace X] :
                IsClosedMap SeparationQuotient.mk
                @[simp]
                theorem SeparationQuotient.comap_mk_nhds_mk {X : Type u_1} [TopologicalSpace X] {x : X} :
                Filter.comap SeparationQuotient.mk (nhds (SeparationQuotient.mk x)) = nhds x
                @[simp]
                theorem SeparationQuotient.comap_mk_nhdsSet_image {X : Type u_1} [TopologicalSpace X] {s : Set X} :
                Filter.comap SeparationQuotient.mk (nhdsSet (SeparationQuotient.mk '' s)) = nhdsSet s
                theorem SeparationQuotient.map_mk_nhds {X : Type u_1} [TopologicalSpace X] {x : X} :
                Filter.map SeparationQuotient.mk (nhds x) = nhds (SeparationQuotient.mk x)
                theorem SeparationQuotient.map_mk_nhdsSet {X : Type u_1} [TopologicalSpace X] {s : Set X} :
                Filter.map SeparationQuotient.mk (nhdsSet s) = nhdsSet (SeparationQuotient.mk '' s)
                theorem SeparationQuotient.comap_mk_nhdsSet {X : Type u_1} [TopologicalSpace X] {t : Set (SeparationQuotient X)} :
                Filter.comap SeparationQuotient.mk (nhdsSet t) = nhdsSet (SeparationQuotient.mk ⁻¹' t)
                theorem SeparationQuotient.preimage_mk_closure {X : Type u_1} [TopologicalSpace X] {t : Set (SeparationQuotient X)} :
                SeparationQuotient.mk ⁻¹' closure t = closure (SeparationQuotient.mk ⁻¹' t)
                theorem SeparationQuotient.preimage_mk_interior {X : Type u_1} [TopologicalSpace X] {t : Set (SeparationQuotient X)} :
                SeparationQuotient.mk ⁻¹' interior t = interior (SeparationQuotient.mk ⁻¹' t)
                theorem SeparationQuotient.preimage_mk_frontier {X : Type u_1} [TopologicalSpace X] {t : Set (SeparationQuotient X)} :
                SeparationQuotient.mk ⁻¹' frontier t = frontier (SeparationQuotient.mk ⁻¹' t)
                theorem SeparationQuotient.image_mk_closure {X : Type u_1} [TopologicalSpace X] {s : Set X} :
                SeparationQuotient.mk '' closure s = closure (SeparationQuotient.mk '' s)
                theorem SeparationQuotient.map_prod_map_mk_nhds {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] (x : X) (y : Y) :
                Filter.map (Prod.map SeparationQuotient.mk SeparationQuotient.mk) (nhds (x, y)) = nhds (SeparationQuotient.mk x, SeparationQuotient.mk y)
                theorem SeparationQuotient.map_mk_nhdsWithin_preimage {X : Type u_1} [TopologicalSpace X] (s : Set (SeparationQuotient X)) (x : X) :
                Filter.map SeparationQuotient.mk (nhdsWithin x (SeparationQuotient.mk ⁻¹' s)) = nhdsWithin (SeparationQuotient.mk x) s
                def SeparationQuotient.lift {X : Type u_1} {α : Type u_4} [TopologicalSpace X] (f : Xα) (hf : ∀ (x y : X), Inseparable x yf x = f y) :

                Lift a map f : X → α such that Inseparable x y → f x = f y to a map SeparationQuotient X → α.

                Equations
                Instances For
                  @[simp]
                  theorem SeparationQuotient.lift_mk {X : Type u_1} {α : Type u_4} [TopologicalSpace X] {f : Xα} (hf : ∀ (x y : X), Inseparable x yf x = f y) (x : X) :
                  @[simp]
                  theorem SeparationQuotient.lift_comp_mk {X : Type u_1} {α : Type u_4} [TopologicalSpace X] {f : Xα} (hf : ∀ (x y : X), Inseparable x yf x = f y) :
                  SeparationQuotient.lift f hf SeparationQuotient.mk = f
                  @[simp]
                  theorem SeparationQuotient.tendsto_lift_nhds_mk {X : Type u_1} {α : Type u_4} [TopologicalSpace X] {x : X} {f : Xα} {hf : ∀ (x y : X), Inseparable x yf x = f y} {l : Filter α} :
                  @[simp]
                  theorem SeparationQuotient.tendsto_lift_nhdsWithin_mk {X : Type u_1} {α : Type u_4} [TopologicalSpace X] {x : X} {f : Xα} {hf : ∀ (x y : X), Inseparable x yf x = f y} {s : Set (SeparationQuotient X)} {l : Filter α} :
                  @[simp]
                  theorem SeparationQuotient.continuousAt_lift {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x : X} {f : XY} {hf : ∀ (x y : X), Inseparable x yf x = f y} :
                  @[simp]
                  theorem SeparationQuotient.continuousWithinAt_lift {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x : X} {f : XY} {hf : ∀ (x y : X), Inseparable x yf x = f y} {s : Set (SeparationQuotient X)} :
                  @[simp]
                  theorem SeparationQuotient.continuousOn_lift {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} {hf : ∀ (x y : X), Inseparable x yf x = f y} {s : Set (SeparationQuotient X)} :
                  ContinuousOn (SeparationQuotient.lift f hf) s ContinuousOn f (SeparationQuotient.mk ⁻¹' s)
                  @[simp]
                  theorem SeparationQuotient.continuous_lift {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} {hf : ∀ (x y : X), Inseparable x yf x = f y} :
                  def SeparationQuotient.lift₂ {X : Type u_1} {Y : Type u_2} {α : Type u_4} [TopologicalSpace X] [TopologicalSpace Y] (f : XYα) (hf : ∀ (a : X) (b : Y) (c : X) (d : Y), Inseparable a cInseparable b df a b = f c d) :

                  Lift a map f : X → Y → α such that Inseparable a b → Inseparable c d → f a c = f b d to a map SeparationQuotient X → SeparationQuotient Y → α.

                  Equations
                  Instances For
                    @[simp]
                    theorem SeparationQuotient.lift₂_mk {X : Type u_1} {Y : Type u_2} {α : Type u_4} [TopologicalSpace X] [TopologicalSpace Y] {f : XYα} (hf : ∀ (a : X) (b : Y) (c : X) (d : Y), Inseparable a cInseparable b df a b = f c d) (x : X) (y : Y) :
                    @[simp]
                    theorem SeparationQuotient.tendsto_lift₂_nhds {X : Type u_1} {Y : Type u_2} {α : Type u_4} [TopologicalSpace X] [TopologicalSpace Y] {f : XYα} {hf : ∀ (a : X) (b : Y) (c : X) (d : Y), Inseparable a cInseparable b df a b = f c d} {x : X} {y : Y} {l : Filter α} :
                    @[simp]
                    theorem SeparationQuotient.tendsto_lift₂_nhdsWithin {X : Type u_1} {Y : Type u_2} {α : Type u_4} [TopologicalSpace X] [TopologicalSpace Y] {f : XYα} {hf : ∀ (a : X) (b : Y) (c : X) (d : Y), Inseparable a cInseparable b df a b = f c d} {x : X} {y : Y} {s : Set (SeparationQuotient X × SeparationQuotient Y)} {l : Filter α} :
                    @[simp]
                    theorem SeparationQuotient.continuousAt_lift₂ {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] {f : XYZ} {hf : ∀ (a : X) (b : Y) (c : X) (d : Y), Inseparable a cInseparable b df a b = f c d} {x : X} {y : Y} :
                    @[simp]
                    theorem SeparationQuotient.continuousWithinAt_lift₂ {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] {f : XYZ} {hf : ∀ (a : X) (b : Y) (c : X) (d : Y), Inseparable a cInseparable b df a b = f c d} {s : Set (SeparationQuotient X × SeparationQuotient Y)} {x : X} {y : Y} :
                    @[simp]
                    theorem SeparationQuotient.continuousOn_lift₂ {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] {f : XYZ} {hf : ∀ (a : X) (b : Y) (c : X) (d : Y), Inseparable a cInseparable b df a b = f c d} {s : Set (SeparationQuotient X × SeparationQuotient Y)} :
                    ContinuousOn (Function.uncurry (SeparationQuotient.lift₂ f hf)) s ContinuousOn (Function.uncurry f) (Prod.map SeparationQuotient.mk SeparationQuotient.mk ⁻¹' s)
                    @[simp]
                    theorem SeparationQuotient.continuous_lift₂ {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] {f : XYZ} {hf : ∀ (a : X) (b : Y) (c : X) (d : Y), Inseparable a cInseparable b df a b = f c d} :
                    theorem continuous_congr_of_inseparable {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} {g : XY} (h : ∀ (x : X), Inseparable (f x) (g x)) :