Topology of irrational numbers #
In this file we prove the following theorems:
-
isGδ_irrational
,dense_irrational
,eventually_residual_irrational
: irrational numbers form a dense Gδ set; -
Irrational.eventually_forall_le_dist_cast_div
,Irrational.eventually_forall_le_dist_cast_div_of_denom_le
;Irrational.eventually_forall_le_dist_cast_rat_of_denom_le
: a sufficiently small neighborhood of an irrational number is disjoint with the set of rational numbers with bounded denominator.
We also provide OrderTopology
, NoMinOrder
, NoMaxOrder
, and DenselyOrdered
instances for {x // Irrational x}
.
Tags #
irrational, residual
instance
Irrational.instNoMaxOrderSubtypeRealIrrationalLtInstLTReal :
NoMaxOrder { x : ℝ // Irrational x }
Equations
- Irrational.instNoMaxOrderSubtypeRealIrrationalLtInstLTReal = (_ : NoMaxOrder { x : ℝ // Irrational x })
instance
Irrational.instNoMinOrderSubtypeRealIrrationalLtInstLTReal :
NoMinOrder { x : ℝ // Irrational x }
Equations
- Irrational.instNoMinOrderSubtypeRealIrrationalLtInstLTReal = (_ : NoMinOrder { x : ℝ // Irrational x })
instance
Irrational.instDenselyOrderedSubtypeRealIrrationalLtInstLTReal :
DenselyOrdered { x : ℝ // Irrational x }
Equations
- Irrational.instDenselyOrderedSubtypeRealIrrationalLtInstLTReal = (_ : DenselyOrdered { x : ℝ // Irrational x })