Metrizability of a T₃ topological space with second countable topology #
In this file we define metrizable topological spaces, i.e., topological spaces for which there exists a metric space structure that generates the same topology.
A topological space is pseudo metrizable if there exists a pseudo metric space structure
compatible with the topology. To endow such a space with a compatible distance, use
letI : PseudoMetricSpace X := TopologicalSpace.pseudoMetrizableSpacePseudoMetric X
.
- exists_pseudo_metric : ∃ (m : PseudoMetricSpace X), UniformSpace.toTopologicalSpace = t
Instances
Equations
Construct on a metrizable space a metric compatible with the topology.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- (_ : TopologicalSpace.PseudoMetrizableSpace (X × Y)) = (_ : TopologicalSpace.PseudoMetrizableSpace (X × Y))
Given an inducing map of a topological space into a pseudo metrizable space, the source space is also pseudo metrizable.
Every pseudo-metrizable space is first countable.
Equations
- (_ : FirstCountableTopology X) = (_ : FirstCountableTopology X)
Equations
- (_ : TopologicalSpace.PseudoMetrizableSpace ↑s) = (_ : TopologicalSpace.PseudoMetrizableSpace { x : X // x ∈ s })
Equations
- (_ : TopologicalSpace.PseudoMetrizableSpace ((i : ι) → π i)) = (_ : TopologicalSpace.PseudoMetrizableSpace ((i : ι) → π i))
A topological space is metrizable if there exists a metric space structure compatible with the
topology. To endow such a space with a compatible distance, use
letI : MetricSpace X := TopologicalSpace.metrizableSpaceMetric X
.
- exists_metric : ∃ (m : MetricSpace X), UniformSpace.toTopologicalSpace = t
Instances
Equations
- (_ : TopologicalSpace.MetrizableSpace X) = (_ : TopologicalSpace.MetrizableSpace X)
Equations
Construct on a metrizable space a metric compatible with the topology.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- (_ : TopologicalSpace.MetrizableSpace (X × Y)) = (_ : TopologicalSpace.MetrizableSpace (X × Y))
Given an embedding of a topological space into a metrizable space, the source space is also metrizable.
Equations
- (_ : TopologicalSpace.MetrizableSpace ↑s) = (_ : TopologicalSpace.MetrizableSpace { x : X // x ∈ s })
Equations
- (_ : TopologicalSpace.MetrizableSpace ((i : ι) → π i)) = (_ : TopologicalSpace.MetrizableSpace ((i : ι) → π i))