Set neighborhoods of intervals #
In this file we prove basic theorems about 𝓝ˢ s
,
where s
is one of the intervals
Set.Ici
, Set.Iic
, Set.Ioi
, Set.Iio
, Set.Ico
, Set.Ioc
, Set.Ioo
, and Set.Icc
.
First, we prove lemmas in terms of filter equalities.
Then we prove lemmas about s ∈ 𝓝ˢ t
, where both s
and t
are intervals.
Finally, we prove a few lemmas about filter bases of 𝓝ˢ (Iic a)
and 𝓝ˢ (Ici a)
.
Formulae for 𝓝ˢ
of intervals #
@[simp]
theorem
nhdsSet_Ioi
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
:
nhdsSet (Set.Ioi a) = Filter.principal (Set.Ioi a)
@[simp]
theorem
nhdsSet_Iio
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
:
nhdsSet (Set.Iio a) = Filter.principal (Set.Iio a)
@[simp]
theorem
nhdsSet_Ioo
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
:
nhdsSet (Set.Ioo a b) = Filter.principal (Set.Ioo a b)
theorem
nhdsSet_Ici
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
:
theorem
nhdsSet_Iic
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
:
theorem
nhdsSet_Ico
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
(h : a < b)
:
theorem
nhdsSet_Ioc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
(h : a < b)
:
theorem
nhdsSet_Icc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
(h : a ≤ b)
:
Lemmas about Ixi _ ∈ 𝓝ˢ (Set.Ici _)
#
@[simp]
theorem
Ioi_mem_nhdsSet_Ici_iff
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
:
theorem
Ioi_mem_nhdsSet_Ici
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
:
Alias of the reverse direction of Ioi_mem_nhdsSet_Ici_iff
.
theorem
Ici_mem_nhdsSet_Ici
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
(h : a < b)
:
Lemmas about Iix _ ∈ 𝓝ˢ (Set.Iic _)
#
theorem
Iio_mem_nhdsSet_Iic_iff
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
:
theorem
Iio_mem_nhdsSet_Iic
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
:
Alias of the reverse direction of Iio_mem_nhdsSet_Iic_iff
.
theorem
Iic_mem_nhdsSet_Iic
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
(h : a < b)
:
Lemmas about Ixx _ _? ∈ 𝓝ˢ (Set.Icc _ _)
#
theorem
Ioi_mem_nhdsSet_Icc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : a < b)
:
theorem
Ici_mem_nhdsSet_Icc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : a < b)
:
theorem
Iio_mem_nhdsSet_Icc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : b < c)
:
theorem
Iic_mem_nhdsSet_Icc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : b < c)
:
theorem
Ioo_mem_nhdsSet_Icc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a < b)
(h' : c < d)
:
theorem
Ico_mem_nhdsSet_Icc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a < b)
(h' : c < d)
:
theorem
Ioc_mem_nhdsSet_Icc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a < b)
(h' : c < d)
:
theorem
Icc_mem_nhdsSet_Icc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a < b)
(h' : c < d)
:
Lemmas about Ixx _ _? ∈ 𝓝ˢ (Set.Ico _ _)
#
theorem
Ici_mem_nhdsSet_Ico
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : a < b)
:
theorem
Ioi_mem_nhdsSet_Ico
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : a < b)
:
theorem
Iio_mem_nhdsSet_Ico
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : b ≤ c)
:
theorem
Iic_mem_nhdsSet_Ico
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : b ≤ c)
:
theorem
Ioo_mem_nhdsSet_Ico
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a < b)
(h' : c ≤ d)
:
theorem
Icc_mem_nhdsSet_Ico
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a < b)
(h' : c ≤ d)
:
theorem
Ioc_mem_nhdsSet_Ico
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a < b)
(h' : c ≤ d)
:
theorem
Ico_mem_nhdsSet_Ico
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a < b)
(h' : c ≤ d)
:
Lemmas about Ixx _ _? ∈ 𝓝ˢ (Set.Ioc _ _)
#
theorem
Ioi_mem_nhdsSet_Ioc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : a ≤ b)
:
theorem
Iio_mem_nhdsSet_Ioc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : b < c)
:
theorem
Ici_mem_nhdsSet_Ioc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : a ≤ b)
:
theorem
Iic_mem_nhdsSet_Ioc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
(h : b < c)
:
theorem
Ioo_mem_nhdsSet_Ioc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a ≤ b)
(h' : c < d)
:
theorem
Icc_mem_nhdsSet_Ioc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a ≤ b)
(h' : c < d)
:
theorem
Ioc_mem_nhdsSet_Ioc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a ≤ b)
(h' : c < d)
:
theorem
Ico_mem_nhdsSet_Ioc
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderClosedTopology α]
{a : α}
{b : α}
{c : α}
{d : α}
(h : a ≤ b)
(h' : c < d)
:
Filter bases of 𝓝ˢ (Iic a)
and 𝓝ˢ (Ici a)
#
theorem
hasBasis_nhdsSet_Iic_Iio
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
(a : α)
[h : Nonempty ↑(Set.Ioi a)]
:
Filter.HasBasis (nhdsSet (Set.Iic a)) (fun (x : α) => a < x) Set.Iio
theorem
hasBasis_nhdsSet_Iic_Iic
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
(a : α)
[Filter.NeBot (nhdsWithin a (Set.Ioi a))]
:
Filter.HasBasis (nhdsSet (Set.Iic a)) (fun (x : α) => a < x) Set.Iic
@[simp]
theorem
Iic_mem_nhdsSet_Iic_iff
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
{a : α}
{b : α}
[Filter.NeBot (nhdsWithin b (Set.Ioi b))]
:
theorem
hasBasis_nhdsSet_Ici_Ioi
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
(a : α)
[Nonempty ↑(Set.Iio a)]
:
Filter.HasBasis (nhdsSet (Set.Ici a)) (fun (x : α) => x < a) Set.Ioi
theorem
hasBasis_nhdsSet_Ici_Ici
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
(a : α)
[Filter.NeBot (nhdsWithin a (Set.Iio a))]
:
Filter.HasBasis (nhdsSet (Set.Ici a)) (fun (x : α) => x < a) Set.Ici
@[simp]
theorem
Ici_mem_nhdsSet_Ici_iff
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
{a : α}
{b : α}
[Filter.NeBot (nhdsWithin b (Set.Iio b))]
: