Documentation

Mathlib.Topology.Spectral.Hom

Spectral maps #

This file defines spectral maps. A map is spectral when it's continuous and the preimage of a compact open set is compact open.

Main declarations #

TODO #

Once we have SpectralSpace, IsSpectralMap should move to Mathlib.Topology.Spectral.Basic.

structure IsSpectralMap {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) extends Continuous :

A function between topological spaces is spectral if it is continuous and the preimage of every compact open set is compact open.

  • isOpen_preimage : ∀ (s : Set β), IsOpen sIsOpen (f ⁻¹' s)
  • isCompact_preimage_of_isOpen : ∀ ⦃s : Set β⦄, IsOpen sIsCompact sIsCompact (f ⁻¹' s)

    A function between topological spaces is spectral if it is continuous and the preimage of every compact open set is compact open.

Instances For
    theorem IsCompact.preimage_of_isOpen {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {s : Set β} (hf : IsSpectralMap f) (h₀ : IsCompact s) (h₁ : IsOpen s) :
    theorem IsSpectralMap.continuous {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsSpectralMap f) :
    theorem IsSpectralMap.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {f : βγ} {g : αβ} (hf : IsSpectralMap f) (hg : IsSpectralMap g) :
    structure SpectralMap (α : Type u_6) (β : Type u_7) [TopologicalSpace α] [TopologicalSpace β] :
    Type (max u_6 u_7)

    The type of spectral maps from α to β.

    • toFun : αβ

      function between topological spaces

    • spectral' : IsSpectralMap self.toFun

      proof that toFun is a spectral map

    Instances For
      class SpectralMapClass (F : Type u_6) (α : Type u_7) (β : Type u_8) [TopologicalSpace α] [TopologicalSpace β] [FunLike F α β] :

      SpectralMapClass F α β states that F is a type of spectral maps.

      You should extend this class when you extend SpectralMap.

      • map_spectral : ∀ (f : F), IsSpectralMap f

        statement that F is a type of spectral maps

      Instances
        instance SpectralMapClass.toContinuousMapClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [FunLike F α β] [SpectralMapClass F α β] :
        Equations
        instance instCoeTCSpectralMap {F : Type u_1} {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [FunLike F α β] [SpectralMapClass F α β] :
        CoeTC F (SpectralMap α β)
        Equations
        • instCoeTCSpectralMap = { coe := fun (f : F) => { toFun := f, spectral' := (_ : IsSpectralMap f) } }

        Spectral maps #

        def SpectralMap.toContinuousMap {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) :
        C(α, β)

        Reinterpret a SpectralMap as a ContinuousMap.

        Equations
        Instances For
          instance SpectralMap.instFunLike {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] :
          FunLike (SpectralMap α β) α β
          Equations
          • SpectralMap.instFunLike = { coe := SpectralMap.toFun, coe_injective' := (_ : ∀ (f g : SpectralMap α β), f.toFun = g.toFunf = g) }
          @[simp]
          theorem SpectralMap.toFun_eq_coe {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] {f : SpectralMap α β} :
          f.toFun = f
          theorem SpectralMap.ext {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] {f : SpectralMap α β} {g : SpectralMap α β} (h : ∀ (a : α), f a = g a) :
          f = g
          def SpectralMap.copy {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) (f' : αβ) (h : f' = f) :

          Copy of a SpectralMap with a new toFun equal to the old one. Useful to fix definitional equalities.

          Equations
          Instances For
            @[simp]
            theorem SpectralMap.coe_copy {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) (f' : αβ) (h : f' = f) :
            (SpectralMap.copy f f' h) = f'
            theorem SpectralMap.copy_eq {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) (f' : αβ) (h : f' = f) :
            def SpectralMap.id (α : Type u_2) [TopologicalSpace α] :

            id as a SpectralMap.

            Equations
            Instances For
              @[simp]
              theorem SpectralMap.coe_id (α : Type u_2) [TopologicalSpace α] :
              (SpectralMap.id α) = id
              @[simp]
              theorem SpectralMap.id_apply {α : Type u_2} [TopologicalSpace α] (a : α) :
              (SpectralMap.id α) a = a
              def SpectralMap.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : SpectralMap β γ) (g : SpectralMap α β) :

              Composition of SpectralMaps as a SpectralMap.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem SpectralMap.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : SpectralMap β γ) (g : SpectralMap α β) :
                (SpectralMap.comp f g) = f g
                @[simp]
                theorem SpectralMap.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : SpectralMap β γ) (g : SpectralMap α β) (a : α) :
                (SpectralMap.comp f g) a = f (g a)
                @[simp]
                theorem SpectralMap.coe_comp_continuousMap {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : SpectralMap β γ) (g : SpectralMap α β) :
                f g = f g
                theorem SpectralMap.coe_comp_continuousMap' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : SpectralMap β γ) (g : SpectralMap α β) :
                @[simp]
                theorem SpectralMap.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ] (f : SpectralMap γ δ) (g : SpectralMap β γ) (h : SpectralMap α β) :
                @[simp]
                theorem SpectralMap.comp_id {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) :
                @[simp]
                theorem SpectralMap.id_comp {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) :
                @[simp]
                theorem SpectralMap.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g₁ : SpectralMap β γ} {g₂ : SpectralMap β γ} {f : SpectralMap α β} (hf : Function.Surjective f) :
                SpectralMap.comp g₁ f = SpectralMap.comp g₂ f g₁ = g₂
                @[simp]
                theorem SpectralMap.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : SpectralMap β γ} {f₁ : SpectralMap α β} {f₂ : SpectralMap α β} (hg : Function.Injective g) :
                SpectralMap.comp g f₁ = SpectralMap.comp g f₂ f₁ = f₂