Uniform space structure on matrices #
instance
Matrix.instUniformSpaceMatrix
(m : Type u_1)
(n : Type u_2)
(𝕜 : Type u_3)
[UniformSpace 𝕜]
:
UniformSpace (Matrix m n 𝕜)
Equations
- Matrix.instUniformSpaceMatrix m n 𝕜 = inferInstance
instance
Matrix.instUniformAddGroup
(m : Type u_1)
(n : Type u_2)
(𝕜 : Type u_3)
[UniformSpace 𝕜]
[AddGroup 𝕜]
[UniformAddGroup 𝕜]
:
UniformAddGroup (Matrix m n 𝕜)
Equations
- (_ : UniformAddGroup (Matrix m n 𝕜)) = (_ : UniformAddGroup (m → n → 𝕜))
theorem
Matrix.uniformity
(m : Type u_1)
(n : Type u_2)
(𝕜 : Type u_3)
[UniformSpace 𝕜]
:
uniformity (Matrix m n 𝕜) = ⨅ (i : m), ⨅ (j : n), Filter.comap (fun (a : Matrix m n 𝕜 × Matrix m n 𝕜) => (a.fst i j, a.snd i j)) (uniformity 𝕜)
theorem
Matrix.uniformContinuous
(m : Type u_1)
(n : Type u_2)
(𝕜 : Type u_3)
[UniformSpace 𝕜]
{β : Type u_4}
[UniformSpace β]
{f : β → Matrix m n 𝕜}
:
UniformContinuous f ↔ ∀ (i : m) (j : n), UniformContinuous fun (x : β) => f x i j
instance
Matrix.instCompleteSpaceMatrixInstUniformSpaceMatrix
(m : Type u_1)
(n : Type u_2)
(𝕜 : Type u_3)
[UniformSpace 𝕜]
[CompleteSpace 𝕜]
:
CompleteSpace (Matrix m n 𝕜)
Equations
- (_ : CompleteSpace (Matrix m n 𝕜)) = (_ : CompleteSpace (m → n → 𝕜))
instance
Matrix.instSeparatedSpaceMatrixInstUniformSpaceMatrix
(m : Type u_1)
(n : Type u_2)
(𝕜 : Type u_3)
[UniformSpace 𝕜]
[SeparatedSpace 𝕜]
:
SeparatedSpace (Matrix m n 𝕜)
Equations
- (_ : SeparatedSpace (Matrix m n 𝕜)) = (_ : SeparatedSpace (m → n → 𝕜))