Standard constructions on vector bundles #
This file contains several standard constructions on vector bundles:
-
Bundle.Trivial.vectorBundle ๐ B F
: the trivial vector bundle with scalar field๐
and model fiberF
over the baseB
-
VectorBundle.prod
: for vector bundlesEโ
andEโ
with scalar field๐
over a common base, a vector bundle structure on their direct sumEโ รแต Eโ
(the notation stands forfun x โฆ Eโ x ร Eโ x
). -
VectorBundle.pullback
: for a vector bundleE
overB
, a vector bundle structure on its pullbackf *แต E
by a mapf : B' โ B
(the notation is a type synonym forE โ f
).
Tags #
Vector bundle, direct sum, pullback
The trivial vector bundle #
instance
Bundle.Trivial.trivialization.isLinear
(๐ : Type u_1)
(B : Type u_2)
(F : Type u_3)
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
[TopologicalSpace B]
:
Equations
- (_ : Trivialization.IsLinear ๐ (Bundle.Trivial.trivialization B F)) = (_ : Trivialization.IsLinear ๐ (Bundle.Trivial.trivialization B F))
theorem
Bundle.Trivial.trivialization.coordChangeL
{๐ : Type u_1}
(B : Type u_2)
(F : Type u_3)
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
[TopologicalSpace B]
(b : B)
:
Trivialization.coordChangeL ๐ (Bundle.Trivial.trivialization B F) (Bundle.Trivial.trivialization B F) b = ContinuousLinearEquiv.refl ๐ F
instance
Bundle.Trivial.vectorBundle
(๐ : Type u_1)
(B : Type u_2)
(F : Type u_3)
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
[TopologicalSpace B]
:
VectorBundle ๐ F (Bundle.Trivial B F)
Equations
- (_ : VectorBundle ๐ F (Bundle.Trivial B F)) = (_ : VectorBundle ๐ F (Bundle.Trivial B F))
Direct sum of two vector bundles #
instance
Trivialization.prod.isLinear
(๐ : Type u_1)
{B : Type u_2}
[NontriviallyNormedField ๐]
[TopologicalSpace B]
{Fโ : Type u_3}
[NormedAddCommGroup Fโ]
[NormedSpace ๐ Fโ]
{Eโ : B โ Type u_4}
[TopologicalSpace (Bundle.TotalSpace Fโ Eโ)]
{Fโ : Type u_5}
[NormedAddCommGroup Fโ]
[NormedSpace ๐ Fโ]
{Eโ : B โ Type u_6}
[TopologicalSpace (Bundle.TotalSpace Fโ Eโ)]
[(x : B) โ AddCommMonoid (Eโ x)]
[(x : B) โ Module ๐ (Eโ x)]
[(x : B) โ AddCommMonoid (Eโ x)]
[(x : B) โ Module ๐ (Eโ x)]
(eโ : Trivialization Fโ Bundle.TotalSpace.proj)
(eโ : Trivialization Fโ Bundle.TotalSpace.proj)
[Trivialization.IsLinear ๐ eโ]
[Trivialization.IsLinear ๐ eโ]
:
Trivialization.IsLinear ๐ (Trivialization.prod eโ eโ)
Equations
- (_ : Trivialization.IsLinear ๐ (Trivialization.prod eโ eโ)) = (_ : Trivialization.IsLinear ๐ (Trivialization.prod eโ eโ))
@[simp]
theorem
Trivialization.coordChangeL_prod
(๐ : Type u_1)
{B : Type u_2}
[NontriviallyNormedField ๐]
[TopologicalSpace B]
{Fโ : Type u_3}
[NormedAddCommGroup Fโ]
[NormedSpace ๐ Fโ]
{Eโ : B โ Type u_4}
[TopologicalSpace (Bundle.TotalSpace Fโ Eโ)]
{Fโ : Type u_5}
[NormedAddCommGroup Fโ]
[NormedSpace ๐ Fโ]
{Eโ : B โ Type u_6}
[TopologicalSpace (Bundle.TotalSpace Fโ Eโ)]
[(x : B) โ AddCommMonoid (Eโ x)]
[(x : B) โ Module ๐ (Eโ x)]
[(x : B) โ AddCommMonoid (Eโ x)]
[(x : B) โ Module ๐ (Eโ x)]
(eโ : Trivialization Fโ Bundle.TotalSpace.proj)
(eโ' : Trivialization Fโ Bundle.TotalSpace.proj)
(eโ : Trivialization Fโ Bundle.TotalSpace.proj)
(eโ' : Trivialization Fโ Bundle.TotalSpace.proj)
[Trivialization.IsLinear ๐ eโ]
[Trivialization.IsLinear ๐ eโ']
[Trivialization.IsLinear ๐ eโ]
[Trivialization.IsLinear ๐ eโ']
โฆb : Bโฆ
(hb : b โ (Trivialization.prod eโ eโ).baseSet โฉ (Trivialization.prod eโ' eโ').baseSet)
:
โ(Trivialization.coordChangeL ๐ (Trivialization.prod eโ eโ) (Trivialization.prod eโ' eโ') b) = ContinuousLinearMap.prodMap โ(Trivialization.coordChangeL ๐ eโ eโ' b) โ(Trivialization.coordChangeL ๐ eโ eโ' b)
theorem
Trivialization.prod_apply
(๐ : Type u_1)
{B : Type u_2}
[NontriviallyNormedField ๐]
[TopologicalSpace B]
{Fโ : Type u_3}
[NormedAddCommGroup Fโ]
[NormedSpace ๐ Fโ]
{Eโ : B โ Type u_4}
[TopologicalSpace (Bundle.TotalSpace Fโ Eโ)]
{Fโ : Type u_5}
[NormedAddCommGroup Fโ]
[NormedSpace ๐ Fโ]
{Eโ : B โ Type u_6}
[TopologicalSpace (Bundle.TotalSpace Fโ Eโ)]
[(x : B) โ AddCommMonoid (Eโ x)]
[(x : B) โ Module ๐ (Eโ x)]
[(x : B) โ AddCommMonoid (Eโ x)]
[(x : B) โ Module ๐ (Eโ x)]
{eโ : Trivialization Fโ Bundle.TotalSpace.proj}
{eโ : Trivialization Fโ Bundle.TotalSpace.proj}
[(x : B) โ TopologicalSpace (Eโ x)]
[(x : B) โ TopologicalSpace (Eโ x)]
[FiberBundle Fโ Eโ]
[FiberBundle Fโ Eโ]
[Trivialization.IsLinear ๐ eโ]
[Trivialization.IsLinear ๐ eโ]
{x : B}
(hxโ : x โ eโ.baseSet)
(hxโ : x โ eโ.baseSet)
(vโ : Eโ x)
(vโ : Eโ x)
:
โ(Trivialization.prod eโ eโ) { proj := x, snd := (vโ, vโ) } = (x, (Trivialization.continuousLinearEquivAt ๐ eโ x hxโ) vโ, (Trivialization.continuousLinearEquivAt ๐ eโ x hxโ) vโ)
instance
VectorBundle.prod
(๐ : Type u_1)
{B : Type u_2}
[NontriviallyNormedField ๐]
[TopologicalSpace B]
(Fโ : Type u_3)
[NormedAddCommGroup Fโ]
[NormedSpace ๐ Fโ]
(Eโ : B โ Type u_4)
[TopologicalSpace (Bundle.TotalSpace Fโ Eโ)]
(Fโ : Type u_5)
[NormedAddCommGroup Fโ]
[NormedSpace ๐ Fโ]
(Eโ : B โ Type u_6)
[TopologicalSpace (Bundle.TotalSpace Fโ Eโ)]
[(x : B) โ AddCommMonoid (Eโ x)]
[(x : B) โ Module ๐ (Eโ x)]
[(x : B) โ AddCommMonoid (Eโ x)]
[(x : B) โ Module ๐ (Eโ x)]
[(x : B) โ TopologicalSpace (Eโ x)]
[(x : B) โ TopologicalSpace (Eโ x)]
[FiberBundle Fโ Eโ]
[FiberBundle Fโ Eโ]
[VectorBundle ๐ Fโ Eโ]
[VectorBundle ๐ Fโ Eโ]
:
VectorBundle ๐ (Fโ ร Fโ) fun (x : B) => Eโ x ร Eโ x
The product of two vector bundles is a vector bundle.
Equations
- (_ : VectorBundle ๐ (Fโ ร Fโ) fun (x : B) => Eโ x ร Eโ x) = (_ : VectorBundle ๐ (Fโ ร Fโ) fun (x : B) => Eโ x ร Eโ x)
@[simp]
theorem
Trivialization.continuousLinearEquivAt_prod
{๐ : Type u_1}
{B : Type u_2}
[NontriviallyNormedField ๐]
[TopologicalSpace B]
{Fโ : Type u_3}
[NormedAddCommGroup Fโ]
[NormedSpace ๐ Fโ]
{Eโ : B โ Type u_4}
[TopologicalSpace (Bundle.TotalSpace Fโ Eโ)]
{Fโ : Type u_5}
[NormedAddCommGroup Fโ]
[NormedSpace ๐ Fโ]
{Eโ : B โ Type u_6}
[TopologicalSpace (Bundle.TotalSpace Fโ Eโ)]
[(x : B) โ AddCommMonoid (Eโ x)]
[(x : B) โ Module ๐ (Eโ x)]
[(x : B) โ AddCommMonoid (Eโ x)]
[(x : B) โ Module ๐ (Eโ x)]
[(x : B) โ TopologicalSpace (Eโ x)]
[(x : B) โ TopologicalSpace (Eโ x)]
[FiberBundle Fโ Eโ]
[FiberBundle Fโ Eโ]
{eโ : Trivialization Fโ Bundle.TotalSpace.proj}
{eโ : Trivialization Fโ Bundle.TotalSpace.proj}
[Trivialization.IsLinear ๐ eโ]
[Trivialization.IsLinear ๐ eโ]
{x : B}
(hx : x โ (Trivialization.prod eโ eโ).baseSet)
:
Trivialization.continuousLinearEquivAt ๐ (Trivialization.prod eโ eโ) x hx = ContinuousLinearEquiv.prod (Trivialization.continuousLinearEquivAt ๐ eโ x (_ : x โ eโ.baseSet))
(Trivialization.continuousLinearEquivAt ๐ eโ x (_ : x โ eโ.baseSet))
Pullbacks of vector bundles #
instance
instAddCommMonoidPullback
{B : Type u_3}
(E : B โ Type u_5)
{B' : Type u_6}
(f : B' โ B)
[i : (x : B) โ AddCommMonoid (E x)]
(x : B')
:
AddCommMonoid ((f *แต E) x)
Equations
- instAddCommMonoidPullback E f x = i (f x)
instance
instModulePullbackInstAddCommMonoidPullback
(R : Type u_1)
{B : Type u_3}
(E : B โ Type u_5)
{B' : Type u_6}
(f : B' โ B)
[Semiring R]
[(x : B) โ AddCommMonoid (E x)]
[i : (x : B) โ Module R (E x)]
(x : B')
:
Equations
- instModulePullbackInstAddCommMonoidPullback R E f x = i (f x)
instance
Trivialization.pullback_linear
(๐ : Type u_2)
{B : Type u_3}
{F : Type u_4}
{E : B โ Type u_5}
{B' : Type u_6}
[TopologicalSpace B']
[TopologicalSpace (Bundle.TotalSpace F E)]
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
[TopologicalSpace B]
[(x : B) โ AddCommMonoid (E x)]
[(x : B) โ Module ๐ (E x)]
{K : Type u_7}
[FunLike K B' B]
[ContinuousMapClass K B' B]
(e : Trivialization F Bundle.TotalSpace.proj)
[Trivialization.IsLinear ๐ e]
(f : K)
:
Trivialization.IsLinear ๐ (Trivialization.pullback e f)
Equations
- (_ : Trivialization.IsLinear ๐ (Trivialization.pullback e f)) = (_ : Trivialization.IsLinear ๐ (Trivialization.pullback e f))
instance
VectorBundle.pullback
(๐ : Type u_2)
{B : Type u_3}
{F : Type u_4}
{E : B โ Type u_5}
{B' : Type u_6}
[TopologicalSpace B']
[TopologicalSpace (Bundle.TotalSpace F E)]
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
[TopologicalSpace B]
[(x : B) โ AddCommMonoid (E x)]
[(x : B) โ Module ๐ (E x)]
{K : Type u_7}
[FunLike K B' B]
[ContinuousMapClass K B' B]
[(x : B) โ TopologicalSpace (E x)]
[FiberBundle F E]
[VectorBundle ๐ F E]
(f : K)
:
VectorBundle ๐ F (โf *แต E)
Equations
- (_ : VectorBundle ๐ F (โf *แต E)) = (_ : VectorBundle ๐ F (โf *แต E))