def
Nat.recAux
{motive : Nat → Sort u_1}
(zero : motive 0)
(succ : (n : Nat) → motive n → motive (n + 1))
(t : Nat)
:
motive t
Recursor identical to Nat.rec
but uses notations 0
for Nat.zero
and ·+1
for Nat.succ
Equations
- Nat.recAux zero succ 0 = zero
- Nat.recAux zero succ (Nat.succ n) = succ n (Nat.recAux zero succ n)
Instances For
def
Nat.recAuxOn
{motive : Nat → Sort u_1}
(t : Nat)
(zero : motive 0)
(succ : (n : Nat) → motive n → motive (n + 1))
:
motive t
Recursor identical to Nat.recOn
but uses notations 0
for Nat.zero
and ·+1
for Nat.succ
Equations
- Nat.recAuxOn t zero succ = Nat.recAux zero succ t
Instances For
def
Nat.casesAuxOn
{motive : Nat → Sort u_1}
(t : Nat)
(zero : motive 0)
(succ : (n : Nat) → motive (n + 1))
:
motive t
Recursor identical to Nat.casesOn
but uses notations 0
for Nat.zero
and ·+1
for Nat.succ
Equations
- Nat.casesAuxOn t zero succ = Nat.recAux zero (fun (n : Nat) (x : motive n) => succ n) t
Instances For
def
Nat.strongRec
{motive : Nat → Sort u_1}
(ind : (n : Nat) → ((m : Nat) → m < n → motive m) → motive n)
(t : Nat)
:
motive t
Strong recursor for Nat
Equations
- Nat.strongRec ind t = ind t fun (m : Nat) (x : m < t) => Nat.strongRec ind m
Instances For
def
Nat.strongRecOn
(t : Nat)
{motive : Nat → Sort u_1}
(ind : (n : Nat) → ((m : Nat) → m < n → motive m) → motive n)
:
motive t
Strong recursor for Nat
Equations
- Nat.strongRecOn t ind = Nat.strongRec ind t
Instances For
def
Nat.recDiagAux
{motive : Nat → Nat → Sort u_1}
(zero_left : (n : Nat) → motive 0 n)
(zero_right : (m : Nat) → motive m 0)
(succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1))
(m : Nat)
(n : Nat)
:
motive m n
Simple diagonal recursor for Nat
Equations
- Nat.recDiagAux zero_left zero_right succ_succ 0 x = zero_left x
- Nat.recDiagAux zero_left zero_right succ_succ x 0 = zero_right x
- Nat.recDiagAux zero_left zero_right succ_succ (Nat.succ n) (Nat.succ n_1) = succ_succ n n_1 (Nat.recDiagAux zero_left zero_right succ_succ n n_1)
Instances For
def
Nat.recDiag
{motive : Nat → Nat → Sort u_1}
(zero_zero : motive 0 0)
(zero_succ : (n : Nat) → motive 0 n → motive 0 (n + 1))
(succ_zero : (m : Nat) → motive m 0 → motive (m + 1) 0)
(succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1))
(m : Nat)
(n : Nat)
:
motive m n
Diagonal recursor for Nat
Equations
- Nat.recDiag zero_zero zero_succ succ_zero succ_succ m n = Nat.recDiagAux (Nat.recDiag.left zero_zero zero_succ) (Nat.recDiag.right zero_zero succ_zero) succ_succ m n
Instances For
def
Nat.recDiag.left
{motive : Nat → Nat → Sort u_1}
(zero_zero : motive 0 0)
(zero_succ : (n : Nat) → motive 0 n → motive 0 (n + 1))
(n : Nat)
:
motive 0 n
Left leg for Nat.recDiag
Equations
- Nat.recDiag.left zero_zero zero_succ 0 = zero_zero
- Nat.recDiag.left zero_zero zero_succ (Nat.succ n) = zero_succ n (Nat.recDiag.left zero_zero zero_succ n)
Instances For
def
Nat.recDiag.right
{motive : Nat → Nat → Sort u_1}
(zero_zero : motive 0 0)
(succ_zero : (m : Nat) → motive m 0 → motive (m + 1) 0)
(m : Nat)
:
motive m 0
Right leg for Nat.recDiag
Equations
- Nat.recDiag.right zero_zero succ_zero 0 = zero_zero
- Nat.recDiag.right zero_zero succ_zero (Nat.succ n) = succ_zero n (Nat.recDiag.right zero_zero succ_zero n)
Instances For
def
Nat.recDiagOn
{motive : Nat → Nat → Sort u_1}
(m : Nat)
(n : Nat)
(zero_zero : motive 0 0)
(zero_succ : (n : Nat) → motive 0 n → motive 0 (n + 1))
(succ_zero : (m : Nat) → motive m 0 → motive (m + 1) 0)
(succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1))
:
motive m n
Diagonal recursor for Nat
Equations
- Nat.recDiagOn m n zero_zero zero_succ succ_zero succ_succ = Nat.recDiag zero_zero zero_succ succ_zero succ_succ m n
Instances For
def
Nat.casesDiagOn
{motive : Nat → Nat → Sort u_1}
(m : Nat)
(n : Nat)
(zero_zero : motive 0 0)
(zero_succ : (n : Nat) → motive 0 (n + 1))
(succ_zero : (m : Nat) → motive (m + 1) 0)
(succ_succ : (m n : Nat) → motive (m + 1) (n + 1))
:
motive m n
Diagonal recursor for Nat
Equations
- One or more equations did not get rendered due to their size.
Instances For
Divisibility of natural numbers. a ∣ b
(typed as \|
) says that
there is some c
such that b = a * c
.
testBit #
We define an operation for testing individual bits in the binary representation of a number.