Documentation
Std
.
Data
.
Nat
.
Init
.
Lemmas
Search
Google site search
return to top
source
Imports
Init
Std.Logic
Imported by
Nat
.
succ_sub
Nat
.
sub_le_sub_right
Nat
.
sub_lt_left_of_lt_add
Nat
.
sub_lt_right_of_lt_add
Nat
.
pos_of_ne_zero
Nat
.
min_eq_min
Nat
.
max_eq_max
Nat
.
min_comm
Nat
.
min_le_right
Nat
.
min_le_left
Nat
.
min_eq_left
Nat
.
min_eq_right
Nat
.
max_comm
Nat
.
le_max_left
Nat
.
le_max_right
Nat
.
pow_two_pos
Nat
.
not_le
Nat
.
not_lt
Nat
.
le_min_of_le_of_le
Nat
.
le_min
Nat
.
lt_min
source
theorem
Nat
.
succ_sub
{m :
Nat
}
{n :
Nat
}
(h :
n
≤
m
)
:
Nat.succ
m
-
n
=
Nat.succ
(
m
-
n
)
source
theorem
Nat
.
sub_le_sub_right
{n :
Nat
}
{m :
Nat
}
(h :
n
≤
m
)
(k :
Nat
)
:
n
-
k
≤
m
-
k
source
theorem
Nat
.
sub_lt_left_of_lt_add
{n :
Nat
}
{k :
Nat
}
{m :
Nat
}
(H :
n
≤
k
)
(h :
k
<
n
+
m
)
:
k
-
n
<
m
source
theorem
Nat
.
sub_lt_right_of_lt_add
{n :
Nat
}
{k :
Nat
}
{m :
Nat
}
(H :
n
≤
k
)
(h :
k
<
m
+
n
)
:
k
-
n
<
m
source
theorem
Nat
.
pos_of_ne_zero
{n :
Nat
}
:
n
≠
0
→
0
<
n
source
theorem
Nat
.
min_eq_min
{b :
Nat
}
(a :
Nat
)
:
Nat.min
a
b
=
min
a
b
source
theorem
Nat
.
max_eq_max
{b :
Nat
}
(a :
Nat
)
:
Nat.max
a
b
=
max
a
b
source
theorem
Nat
.
min_comm
(a :
Nat
)
(b :
Nat
)
:
min
a
b
=
min
b
a
source
theorem
Nat
.
min_le_right
(a :
Nat
)
(b :
Nat
)
:
min
a
b
≤
b
source
theorem
Nat
.
min_le_left
(a :
Nat
)
(b :
Nat
)
:
min
a
b
≤
a
source
theorem
Nat
.
min_eq_left
{a :
Nat
}
{b :
Nat
}
(h :
a
≤
b
)
:
min
a
b
=
a
source
theorem
Nat
.
min_eq_right
{a :
Nat
}
{b :
Nat
}
(h :
b
≤
a
)
:
min
a
b
=
b
source
theorem
Nat
.
max_comm
(a :
Nat
)
(b :
Nat
)
:
max
a
b
=
max
b
a
source
theorem
Nat
.
le_max_left
(a :
Nat
)
(b :
Nat
)
:
a
≤
max
a
b
source
theorem
Nat
.
le_max_right
(a :
Nat
)
(b :
Nat
)
:
b
≤
max
a
b
source
theorem
Nat
.
pow_two_pos
(w :
Nat
)
:
0
<
2
^
w
source
@[simp]
theorem
Nat
.
not_le
{a :
Nat
}
{b :
Nat
}
:
¬
a
≤
b
↔
b
<
a
source
@[simp]
theorem
Nat
.
not_lt
{a :
Nat
}
{b :
Nat
}
:
¬
a
<
b
↔
b
≤
a
source
theorem
Nat
.
le_min_of_le_of_le
{a :
Nat
}
{b :
Nat
}
{c :
Nat
}
:
a
≤
b
→
a
≤
c
→
a
≤
min
b
c
source
theorem
Nat
.
le_min
{a :
Nat
}
{b :
Nat
}
{c :
Nat
}
:
a
≤
min
b
c
↔
a
≤
b
∧
a
≤
c
source
theorem
Nat
.
lt_min
{a :
Nat
}
{b :
Nat
}
{c :
Nat
}
:
a
<
min
b
c
↔
a
<
b
∧
a
<
c