The monoidal structure on AlgebraCat
is symmetric. #
In this file we show:
AlgebraCat.instSymmetricCategory : SymmetricCategory (AlgebraCat.{u} R)
instance
AlgebraCat.instBraidedCategoryAlgebraCatInstCategoryAlgebraCatInstMonoidalCategory
{R : Type u}
[CommRing R]
:
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
AlgebraCat.toModuleCatBraidedFunctor_toMonoidalFunctor
(R : Type u)
[CommRing R]
:
(AlgebraCat.toModuleCatBraidedFunctor R).toMonoidalFunctor = AlgebraCat.toModuleCatMonoidalFunctor R
forgetâ‚‚ (AlgebraCat R) (ModuleCat R)
as a braided functor.
Equations
Instances For
instance
AlgebraCat.instFaithfulAlgebraCatInstCategoryAlgebraCatModuleCatToRingModuleCategoryToFunctorInstMonoidalCategoryMonoidalCategoryToLaxMonoidalFunctorToMonoidalFunctorInstBraidedCategoryAlgebraCatInstCategoryAlgebraCatInstMonoidalCategoryToBraidedCategorySymmetricCategoryToModuleCatBraidedFunctor
{R : Type u}
[CommRing R]
:
CategoryTheory.Faithful (AlgebraCat.toModuleCatBraidedFunctor R).toMonoidalFunctor.toLaxMonoidalFunctor.toFunctor
Equations
- One or more equations did not get rendered due to their size.
Equations
- AlgebraCat.instSymmetricCategory = CategoryTheory.symmetricCategoryOfFaithful (AlgebraCat.toModuleCatBraidedFunctor R)