The category of Boolean rings #
This file defines BoolRing
, the category of Boolean rings.
TODO #
Finish the equivalence with BoolAlg
.
The category of Boolean rings.
Equations
Instances For
Equations
- BoolRing.instCoeSortBoolRingType = CategoryTheory.Bundled.coeSort
Equations
- BoolRing.instBooleanRingα X = X.str
Equations
- BoolRing.instInhabitedBoolRing = { default := BoolRing.of PUnit.{u_1 + 1} }
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
BoolRing.Iso.mk_inv
{α : BoolRing}
{β : BoolRing}
(e : ↑α ≃+* ↑β)
:
(BoolRing.Iso.mk e).inv = ↑(RingEquiv.symm e)
@[simp]
theorem
BoolRing.Iso.mk_hom
{α : BoolRing}
{β : BoolRing}
(e : ↑α ≃+* ↑β)
:
(BoolRing.Iso.mk e).hom = ↑e
Constructs an isomorphism of Boolean rings from a ring isomorphism between them.
Equations
- BoolRing.Iso.mk e = CategoryTheory.Iso.mk ↑e ↑(RingEquiv.symm e)
Instances For
@[simp]
theorem
BoolRing.hasForgetToBoolAlg_forget₂_map
{X : BoolRing}
{Y : BoolRing}
(f : ↑X →+* ↑Y)
:
CategoryTheory.HasForget₂.forget₂.toPrefunctor.map f = RingHom.asBoolAlg f
@[simp]
theorem
BoolRing.hasForgetToBoolAlg_forget₂_obj
(X : BoolRing)
:
CategoryTheory.HasForget₂.forget₂.toPrefunctor.obj X = BoolAlg.of (AsBoolAlg ↑X)
Equations
- One or more equations did not get rendered due to their size.
instance
instBooleanAlgebraαLatticeToLatToBddLatToBddDistLat
{X : BoolAlg}
:
BooleanAlgebra ↑(BddDistLat.toBddLat (BoolAlg.toBddDistLat X)).toLat
Equations
- instBooleanAlgebraαLatticeToLatToBddLatToBddDistLat = BoolAlg.instBooleanAlgebra X
@[simp]
theorem
BoolAlg.hasForgetToBoolRing_forget₂_obj
(X : BoolAlg)
:
CategoryTheory.HasForget₂.forget₂.toPrefunctor.obj X = BoolRing.of (AsBoolRing ↑X)
@[simp]
theorem
BoolAlg.hasForgetToBoolRing_forget₂_map
{X : BoolAlg}
{Y : BoolAlg}
(f : BoundedLatticeHom ↑(BddDistLat.toBddLat (BoolAlg.toBddDistLat X)).toLat
↑(BddDistLat.toBddLat (BoolAlg.toBddDistLat Y)).toLat)
:
CategoryTheory.HasForget₂.forget₂.toPrefunctor.map f = BoundedLatticeHom.asBoolRing f
Equations
- One or more equations did not get rendered due to their size.
@[simp]
@[simp]
The equivalence between Boolean rings and Boolean algebras. This is actually an isomorphism.
Equations
- One or more equations did not get rendered due to their size.