Documentation

Mathlib.Order.Category.BoolAlg

The category of boolean algebras #

This defines BoolAlg, the category of boolean algebras.

def BoolAlg :
Type (u_1 + 1)

The category of boolean algebras.

Equations
Instances For
    Equations
    def BoolAlg.of (α : Type u_1) [BooleanAlgebra α] :

    Construct a bundled BoolAlg from a BooleanAlgebra.

    Equations
    Instances For
      @[simp]
      theorem BoolAlg.coe_of (α : Type u_1) [BooleanAlgebra α] :
      (BoolAlg.of α) = α

      Turn a BoolAlg into a BddDistLat by forgetting its complement operation.

      Equations
      Instances For
        @[simp]
        theorem BoolAlg.coe_toBddDistLat (X : BoolAlg) :
        (BoolAlg.toBddDistLat X).toDistLat = X
        @[simp]
        theorem BoolAlg.hasForgetToHeytAlg_forget₂_obj_α (X : BoolAlg) :
        (CategoryTheory.HasForget₂.forget₂.toPrefunctor.obj X) = X
        @[simp]
        theorem BoolAlg.hasForgetToHeytAlg_forget₂_obj_str (X : BoolAlg) :
        (CategoryTheory.HasForget₂.forget₂.toPrefunctor.obj X).str = inferInstance
        @[simp]
        theorem BoolAlg.hasForgetToHeytAlg_forget₂_map_toFun {X : BoolAlg} {Y : BoolAlg} (f : BoundedLatticeHom X Y) (a : X) :
        (CategoryTheory.HasForget₂.forget₂.toPrefunctor.map f) a = f a
        Equations
        • One or more equations did not get rendered due to their size.
        @[simp]
        theorem BoolAlg.Iso.mk_inv_toLatticeHom_toSupHom_toFun {α : BoolAlg} {β : BoolAlg} (e : α ≃o β) (a : β) :
        (BoolAlg.Iso.mk e).inv.toSupHom a = (OrderIso.symm e) a
        @[simp]
        theorem BoolAlg.Iso.mk_hom_toLatticeHom_toSupHom_toFun {α : BoolAlg} {β : BoolAlg} (e : α ≃o β) (a : α) :
        (BoolAlg.Iso.mk e).hom.toSupHom a = e a
        def BoolAlg.Iso.mk {α : BoolAlg} {β : BoolAlg} (e : α ≃o β) :
        α β

        Constructs an equivalence between Boolean algebras from an order isomorphism between them.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem BoolAlg.dual_obj (X : BoolAlg) :
          BoolAlg.dual.toPrefunctor.obj X = BoolAlg.of (X)ᵒᵈ
          @[simp]
          theorem BoolAlg.dual_map {X : BoolAlg} {Y : BoolAlg} (a : BoundedLatticeHom (BddDistLat.toBddLat (BoolAlg.toBddDistLat X)).toLat (BddDistLat.toBddLat (BoolAlg.toBddDistLat Y)).toLat) :
          BoolAlg.dual.toPrefunctor.map a = BoundedLatticeHom.dual a

          OrderDual as a functor.

          Equations
          Instances For

            The equivalence between BoolAlg and itself induced by OrderDual both ways.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For