The category of boolean algebras.
Equations
Instances For
Equations
- BoolAlg.instCoeSortBoolAlgType = CategoryTheory.Bundled.coeSort
Equations
- BoolAlg.instBooleanAlgebra X = X.str
Equations
- BoolAlg.instInhabitedBoolAlg = { default := BoolAlg.of PUnit.{u_1 + 1} }
@[simp]
@[simp]
theorem
BoolAlg.hasForgetToHeytAlg_forget₂_obj_α
(X : BoolAlg)
:
↑(CategoryTheory.HasForget₂.forget₂.toPrefunctor.obj X) = ↑X
@[simp]
theorem
BoolAlg.hasForgetToHeytAlg_forget₂_obj_str
(X : BoolAlg)
:
(CategoryTheory.HasForget₂.forget₂.toPrefunctor.obj X).str = inferInstance
@[simp]
theorem
BoolAlg.hasForgetToHeytAlg_forget₂_map_toFun
{X : BoolAlg}
{Y : BoolAlg}
(f : BoundedLatticeHom ↑X ↑Y)
(a : ↑X)
:
(CategoryTheory.HasForget₂.forget₂.toPrefunctor.map f) a = f a
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
BoolAlg.Iso.mk_inv_toLatticeHom_toSupHom_toFun
{α : BoolAlg}
{β : BoolAlg}
(e : ↑α ≃o ↑β)
(a : ↑β)
:
(BoolAlg.Iso.mk e).inv.toSupHom a = (OrderIso.symm e) a
@[simp]
theorem
BoolAlg.Iso.mk_hom_toLatticeHom_toSupHom_toFun
{α : BoolAlg}
{β : BoolAlg}
(e : ↑α ≃o ↑β)
(a : ↑α)
:
(BoolAlg.Iso.mk e).hom.toSupHom a = e a
@[simp]
@[simp]
theorem
BoolAlg.dual_map
{X : BoolAlg}
{Y : BoolAlg}
(a : BoundedLatticeHom ↑(BddDistLat.toBddLat (BoolAlg.toBddDistLat X)).toLat
↑(BddDistLat.toBddLat (BoolAlg.toBddDistLat Y)).toLat)
:
BoolAlg.dual.toPrefunctor.map a = BoundedLatticeHom.dual a
OrderDual
as a functor.
Equations
- BoolAlg.dual = CategoryTheory.Functor.mk { obj := fun (X : BoolAlg) => BoolAlg.of (↑X)ᵒᵈ, map := fun {X Y : BoolAlg} => ⇑BoundedLatticeHom.dual }