Documentation

Mathlib.Algebra.Category.GroupCat.EquivalenceGroupAddGroup

Equivalence between Group and AddGroup #

This file contains two equivalences:

@[simp]
theorem GroupCat.toAddGroupCat_map {X : GroupCat} {Y : GroupCat} (a : X →* Y) :
GroupCat.toAddGroupCat.toPrefunctor.map a = MonoidHom.toAdditive a

The functor GroupAddGroup by sending X ↦ additive X and f ↦ f.

Equations
Instances For
    @[simp]
    theorem CommGroupCat.toAddCommGroupCat_map {X : CommGroupCat} {Y : CommGroupCat} (a : X →* Y) :
    CommGroupCat.toAddCommGroupCat.toPrefunctor.map a = MonoidHom.toAdditive a

    The functor CommGroupAddCommGroup by sending X ↦ additive X and f ↦ f.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem AddGroupCat.toGroupCat_map {X : AddGroupCat} {Y : AddGroupCat} (a : X →+ Y) :
      AddGroupCat.toGroupCat.toPrefunctor.map a = AddMonoidHom.toMultiplicative a

      The functor AddGroupGroup by sending X ↦ multiplicative Y and f ↦ f.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem AddCommGroupCat.toCommGroupCat_map {X : AddCommGroupCat} {Y : AddCommGroupCat} (a : X →+ Y) :
        AddCommGroupCat.toCommGroupCat.toPrefunctor.map a = AddMonoidHom.toMultiplicative a

        The functor AddCommGroupCommGroup by sending X ↦ multiplicative Y and f ↦ f.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem groupAddGroupEquivalence_inverse_obj_str_inv (X : AddGroupCat) (x : Multiplicative X) :
          x⁻¹ = Additive.ofMul (-Multiplicative.toAdd x)
          @[simp]
          theorem groupAddGroupEquivalence_inverse_map_apply {X : AddGroupCat} {Y : AddGroupCat} (a : X →+ Y) (a : Multiplicative X) :
          (groupAddGroupEquivalence.inverse.toPrefunctor.map a✝) a = Multiplicative.ofAdd (a✝ (Multiplicative.toAdd a))
          @[simp]
          theorem groupAddGroupEquivalence_inverse_obj_str_zpow (X : AddGroupCat) :
          ∀ (a : ) (a_1 : X), DivInvMonoid.zpow a a_1 = a a_1
          @[simp]
          theorem groupAddGroupEquivalence_functor_obj_α (X : GroupCat) :
          (groupAddGroupEquivalence.functor.toPrefunctor.obj X) = Additive X
          @[simp]
          theorem groupAddGroupEquivalence_functor_map_apply {X : GroupCat} {Y : GroupCat} (a : X →* Y) (a : Additive X) :
          (groupAddGroupEquivalence.functor.toPrefunctor.map a✝) a = Additive.ofMul (a✝ (Additive.toMul a))
          @[simp]
          theorem groupAddGroupEquivalence_functor_obj_str_sub (X : GroupCat) (x : Additive X) (y : Additive X) :
          x - y = x - y
          @[simp]
          theorem groupAddGroupEquivalence_inverse_obj_str_mul (X : AddGroupCat) :
          ∀ (x x_1 : Multiplicative X), x * x_1 = x * x_1
          @[simp]
          theorem groupAddGroupEquivalence_functor_obj_str_add (X : GroupCat) :
          ∀ (x x_1 : Additive X), x + x_1 = x + x_1
          @[simp]
          theorem groupAddGroupEquivalence_functor_obj_str_nsmul (X : GroupCat) :
          ∀ (a : ) (a_1 : X), a a_1 = a_1 ^ a
          @[simp]
          theorem groupAddGroupEquivalence_functor_obj_str_neg (X : GroupCat) (x : Additive X) :
          -x = Multiplicative.ofAdd (Additive.toMul x)⁻¹
          @[simp]
          @[simp]
          theorem groupAddGroupEquivalence_inverse_obj_str_npow (X : AddGroupCat) :
          ∀ (a : ) (a_1 : X), Monoid.npow a a_1 = a a_1
          @[simp]
          theorem groupAddGroupEquivalence_functor_obj_str_zsmul (X : GroupCat) :
          ∀ (a : ) (a_1 : X), a a_1 = a_1 ^ a

          The equivalence of categories between Group and AddGroup

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            @[simp]
            theorem commGroupAddCommGroupEquivalence_functor_obj_str_zsmul (X : CommGroupCat) :
            ∀ (a : ) (a_1 : X), a a_1 = a_1 ^ a
            @[simp]
            theorem commGroupAddCommGroupEquivalence_functor_obj_str_add (X : CommGroupCat) :
            ∀ (x x_1 : Additive X), x + x_1 = x + x_1
            @[simp]
            theorem commGroupAddCommGroupEquivalence_unitIso_hom_app_apply (X : CommGroupCat) :
            ∀ (a : ((CategoryTheory.Functor.id CommGroupCat).toPrefunctor.obj X)), (commGroupAddCommGroupEquivalence.unitIso.hom.app X) a = (AddMonoidHom.toMultiplicative (MonoidHom.toAdditive (MulEquiv.toMonoidHom (MulEquiv.symm (MulEquiv.multiplicativeAdditive X))))) ((AddMonoidHom.toMultiplicative (AddEquiv.toAddMonoidHom (AddEquiv.symm (AddEquiv.additiveMultiplicative (AddCommGroupCat.of (Additive X)))))) ((MulEquiv.multiplicativeAdditive X) a))
            @[simp]
            theorem commGroupAddCommGroupEquivalence_inverse_map_apply {X : AddCommGroupCat} {Y : AddCommGroupCat} (a : X →+ Y) (a : Multiplicative X) :
            (commGroupAddCommGroupEquivalence.inverse.toPrefunctor.map a✝) a = Multiplicative.ofAdd (a✝ (Multiplicative.toAdd a))
            @[simp]
            theorem commGroupAddCommGroupEquivalence_functor_obj_str_nsmul (X : CommGroupCat) :
            ∀ (a : ) (a_1 : X), a a_1 = a_1 ^ a
            @[simp]
            @[simp]
            theorem commGroupAddCommGroupEquivalence_functor_map_apply {X : CommGroupCat} {Y : CommGroupCat} (a : X →* Y) (a : Additive X) :
            (commGroupAddCommGroupEquivalence.functor.toPrefunctor.map a✝) a = Additive.ofMul (a✝ (Additive.toMul a))
            @[simp]
            theorem commGroupAddCommGroupEquivalence_inverse_obj_str_inv (X : AddCommGroupCat) (x : Multiplicative X) :
            x⁻¹ = Additive.ofMul (-Multiplicative.toAdd x)
            @[simp]
            theorem commGroupAddCommGroupEquivalence_functor_obj_str_neg (X : CommGroupCat) (x : Additive X) :
            -x = Multiplicative.ofAdd (Additive.toMul x)⁻¹

            The equivalence of categories between CommGroup and AddCommGroup.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For